
ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

Computers and Electrical Engineering 0 0 0 (2016) 1–10

Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

Cooperative ant colony-genetic algorithm based on spark

�

Dong Gaifang, Fu Xueliang

∗, Li Honghui, Xie Pengfei

Inner Mongolia Agricultural University, Hohhot 010018, China

a r t i c l e i n f o

Article history:

Received 14 July 2016

Revised 28 September 2016

Accepted 28 September 2016

Available online xxx

Keywords:

Spark

Mapreduce

Ant colony optimization

Genetic algorithm

TSP

a b s t r a c t

By taking full advantages of both the map and reduce function for the MapReduce par-

allel framework and the memory computation for the Spark platform, this paper designs

and implements the algorithms for solving the traveling salesman problem based on ant

colony algorithm on MapReduce framework and Spark platform. Next, adds the nearest

neighbor selection strategy for choosing next city for the Spark platform ant colony algo-

rithm, and combines it with genetic algorithm by using the optimal individual between ant

colony algorithm and genetic algorithm, in order to update each other’s best individual at

the end of each iteration. Experimental results show that with the increase of ant colony

size, compared to the stand-alone ant colony algorithm, MapReduce ant colony algorithm

reflects the superiority of parallel computation; compared to the MapReduce ant colony

algorithm, Spark platform ant colony algorithm reflects the superiority of memory com-

puting. Cooperated with genetic algorithm, the solution has been improved significantly in

its precision.

© 2016 Elsevier Ltd. All rights reserved.

Combinatorial optimization problem [1] is an important branch of operations research, which involves sorting, filtering

and other issues. The main objective is to find the optimal solution from the feasible solution set. Although the definition

of combinatorial optimization problem is very simple, solving the optimal solution is very difficult. Due to that the solving

process needs huge storage space and very long running time, so traditional computer is unlikely to be achieved, that is,

the so-called “combinatorial explosion” phenomenon. Therefore, for the combinatorial optimization problem, how to use

heuristic algorithm to solve the problem becomes the focus of attention. Heuristic algorithm is summarized according to

the nature of some excellent population collaborative behavior. The outstanding representatives of this kind of algorithm

are ant colony optimization [2–4] , genetic algorithm (GA) [5] and particle group optimization algorithm (PSO) [6] etc.

Ant colony algorithm is a kind of bionics algorithm which is put forward to simulate the natural ants foraging behavior.

Now it has been widely used in fault recognition [7] , vehicle routing problem [8,9] , the system identification [10] , data min-

ing [11,12] , image processing [13–15] , and other fields. The basic principle of ant colony algorithm is that when ants search

path, it will secrete a certain amount of pheromones. Ant colony always communicate through the path pheromones in or-

der to achieve the goal of optimal path. After the end of each iteration, the ant colony algorithm will volatilize pheromone

on the path to form a positive feedback mechanism and to ensure that the ant colony can find the optimal path results.

Since it appeared, there have been a large number of scholars putting forward the improvement strategies. However, in the

treatment of medium and large scale TSP, there is still problem of long searching time and easily falling into local optimal

solution [16] . Many researchers focus on the improvement of the shortcomings of the ant colony algorithm, such as easy

stagnation, slow convergence speed and so on. Gambardella and other scholars proposed the Ant-Q algorithm, which can be
� Reviews processed and recommended for publication to the Editor-in-Chief by Guest Editor Dr. Z. Zheng.
∗ Corresponding author.

E-mail addresses: fxliang@126.com , fuxl@imau.edu.cn (F. Xueliang).

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

0045-7906/© 2016 Elsevier Ltd. All rights reserved.

Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
mailto:fxliang@126.com
mailto:fuxl@imau.edu.cn
http://dx.doi.org/10.1016/j.compeleceng.2016.09.035
http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

2 D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

a good way to maintain the balance between knowledge discovery and knowledge utilization in the process of constructing

the solution [17] . WJ Gutiahr provides a graph search ant system (Ant System Graph-based, GBAS), which has a certain prob-

ability of convergence to the optimal solution of the problem [18] . Wu Bin and Shi Zhongzhi proposed a meeting algorithm,

which effectively improved the quality of the ant first traversal algorithm. Zhang Xuliang, Zhang Jinbin and Zhuang Chang-

wen introduced the cooperative mechanism in basic ant colony algorithm, and proposed the enhanced ant colony algorithm

based on cooperative learning. On the convergence of the ant colony algorithm, Hou Yunhe did a lot of related research and

achieved some preliminary research results; Ding Jianli and Sun Xi combined genetic algorithm and ant colony algorithm

integration with the theory of Markov stochastic process for the convergence of ant colony algorithm and made a lot of

fruitful research.

To get rid of the defect of long searching time, in this paper, we design and implement the basic ant colony algorithm

based on MapReduce parallel framework (MRACO). Compared with basic ant colony algorithm in the single node environ-

ment, the computational time has been greatly improved. While Spark is a parallel platform which is more suitable for

iterative computation in recent two years. Therefore, we design the basic ant colony algorithm based on Spark platform

(Spark-ACO). Experimental results show that the Spark-ACO takes less computational time than MRACO. In view of the de-

fects of the ant colony easily falling into the local optimal solution, Spark-ACO is improved: on the one hand, the nearest

neighbor strategy is used for ants to traverse the city node; on the other hand, ant algorithm and genetic algorithm are

combined to improve the defects of local optimum for ant colony. The experimental results show that the improved hybrid

algorithm has a great improvement on the accuracy of the solution.

The second section of the paper describes the implementation of basic ant colony algorithm; the third section discusses

the design of ant colony optimization based on MapReduce (MRACO); in the fourth section, ant colony algorithm based on

Spark (Spark-ACO) and its improvement have been explained; the fifth section is the experimental results and analysis, and

the sixth section is the conclusion and discussion.

1. Ant colony optimization algorithm

The traveling salesman problem (TSP) is described as follows: A traveling businessman will visit n cities. He starts from

one city, and visit the cities one by one-each city can only be visited once, at last, he returns to the starting city. The shortest

path is required to traverse all the cities.

The mathematical model of ant colony algorithm for solving TSP problem can be described as follows: suppose there

are n nodes in different cities, the m ants (k = 1,2,…, m) are put into different cities randomly selected. Each ant does a

complete traversal of all the cities, returns to the starting city, and records the total length of the path and path length;

During the ant colony searching the optimal path process, each ant has a tabu list tabu k (k = 1,2,…,m) to record the cities

which have been passed. Every step of the ants must be based on the state transition probability P k ij (t). P k ij (t) indicates that

the probability between the city j and the city i for ant k at t time, as shown in the formula (1):

p

k
ij (t) =

⎧ ⎪ ⎨

⎪ ⎩

τα
i j
(i j) × ηβ

i j ∑

s ∈ al l owe d k

τα
i j
(i j) × ηβ

i j

i f j ∈ al l owe d k

0 otherwise

(1)

allowed k in the formula (1) is the collection of cities which ant k allows to access at present; τ ij (t) is the residual pheromone

between city i and city j at time t; ηij (t) is the degree of expectation city i moves to the city j at time t , the value of

ηij (t) = 1/d ij , d ij is path length between city i and j; α represents the information heuristic factor; β represents an expected

heuristic factor.

In the end of each iteration, all the paths between the cities will be residual amount of pheromone. If not promptly

volatilizing the pheromone, too much pheromone will be left on the path in the next iteration process. So the randomness

of the ants selecting the path will be increased. Adjust the pheromone according to the formula (2) and (3), as shown below:

τi j (t + n) = (1 − ρ) τi j (t) + ρ · �τi j (t) (2)

τi j (t) =

m ∑

k =1

τ k
i j (t) (3)

ρ is the information pheromone evaporation coefficient in the formula (2) and (3) which range is (0,1), 1 - ρ is the

pheromone residual factor; τ ij (t) is the pheromone between city i and city j at time t; �τ ij (t) is the pheromone incre-

ment between city i and city j from t to t + n time; τ k
ij (t) is the pheromone for ant k generated at t to t + n time between

the city i and city j . When solving the TSP problem, it is better to use the Ant-Cycle model to update the pheromone on the

path, so the paper uses the Ant-Cycle model, as shown in the formula (4):

τ k
i j (t) =

{
Q
L

< i, j > ∈ P at h L
(4)
0 otherwise

Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10 3

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

Fig. 1. The task processing figure of Hadoop.

2. Ant colony optimization based on mapreduce (MRACO)

Hadoop is one of the most commonly used platform to deal with big data business, and its core module is composed of

distributed file system (Distributed File System HDFS, Hadoop) and MapReduce parallel computing model. MapReduce can

let users develop distributed applications according to their demand in the cloud computing cluster so as to handle large

data sets in parallel; HDFS can solve massive data distributed storage and accessing problem—-generally refers to the GB or

TB level file—and store redundant data to ensure data security. Therefore, Hadoop platform is widely used in the field of

data processing and research in various fields. Large data files can be processed through the Hadoop cluster to obtain the

corresponding results, and the process of its tasks is as shown in Fig. 1:

The design idea of MRACO algorithm is to use the MapReduce programming model to realize the parallelism of feasible

solution of ant colony algorithm based on the basic ant colony algorithm. At the beginning of MRACO algorithm, it initializes

city distance matrix, pheromone matrix and other parameters; when iteration process is started, the ant colony is evenly

distributed in each map. In the map stage, each node stores a feasible solution which is built by themselves in the form of

〈 key, value 〉 , that is 〈 k m

,p m

〉 . The key represents the number of ants and the value is the traversal path sequence.

MapReduce allows the user to specify a combine () function to process the output data of the map () function and then

transfer them to the reduce () function so as to reduce the data transmission cost between cluster nodes. In the combine

phase, each node of the cluster computes the path length of each ant’s path. Then, transmits to the reduce () function in

the form of 〈 k m

,v m

+ p m

〉 .
In the reduce phase, the program will calculate the values of 〈 k best ,v best + p best 〉 , where the key and value, respectively,

indicate that the number of optimal ant and optimal path length with path sequence, and then update pheromone matrix

according to the optimal path sequence. Then, MRACO algorithm goes to the next iteration and repeats until the end.

Algorithm steps are as follows:

Step 1: in the initialization phase, MapReduce programs read the coordinates of the TSP node from HDFS, calculate the

city distance matrix distance[][], and then initialize pheromone matrix tao[][], pheromone volatilization coefficient ρ , the

number of ants m , iterative number N c , heuristic information factor α and expected heuristic factor β .

Step 2: in the stage of map, in every iterative process, the map() function will distribute an ant in a random city node

and calculate the transition probability from the city to all the other cities according to the formula (1). According to the

roulette strategy, an ant selects the next city node. When all cities are visited, the ant number and feasible solution are

transmitted to combine () function in the form of 〈 k m

,p m

〉 .
Step 3: in the combine stage, the feasible solution key value pair 〈 k m

,p m

〉 of the ant colony is used as input, and then

combine () function respectively calculates the path length of the sequence and gets key value pair 〈 k m

,v m

+ p m

〉 . k m

is the

ant number, and v m

+ p m

refers to the feasible solution and the path.

Step 4: in the reduce stage, the 〈 k m

,v m

+ p m

〉 output by combine stage is used as input, and then reduce() function

calculates and finds the 〈 k best ,v best + p best 〉 , which are the optimal path ant and the optimal path length. Algorithm updates

optimal path pheromone according to the formula (3) and (4). Finally, it updates the global pheromone matrix according to

the formula (5), then writes the iterative optimal solution and path as the keys and value 〈 N C + k best ,v best + p best 〉 in HDFS,

thus the iteration ends.

τi j (t + n) = (1 − ρ) τi j (t) + ρ · �τi j (t) (5)

3. Ant colony based on spark (Spark-ACO) and combined with genetic algorithm

3.1. Ant colony based on spark (Spark-ACO)

The design idea of Spark-ACO algorithm is as follows:
Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

4 D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

Fig. 2. The flow diagram of Spark-ACO.

(

(

1) Ant colony algorithm must do lots of iterations to get the optimal solutions, and at the end of each iteration, it updates

the pheromone matrix according to the best path results. Updated pheromone matrix is the key factor of ant colony

traversal in the next iteration. In view of this, Spark-ACO algorithm uses the sharing mechanism of Spark platform. After

the end of every iteration, it will update the pheromone matrix and transfer it to every node in the cluster as a broadcast

variable, so as to be used in the next iteration. In addition, the city distance matrix in the traveling salesman problem is

also transmitted to the cluster nodes by broadcasting mechanism, so as to realize the feasible solution for each node in

the cluster.

2) In ant colony algorithm in each iteration the process that ants build their own feasible solution is completely indepen-

dent. In view of this, algorithm Spark-ACO will package ant colony to parallel RDD sets in each node in the cluster, of

which every RDD represents an ant. Then, according to the function of Spark, a series of operations are designed to carry

on the transformation and operation of RDD and to finally realize the whole process of the feasible solution of the ant

colony represented by the RDD data set. The Spark program is divided into several partitions according to the number

of cluster nodes, and the operation mode of RDD in each partition is completely parallel.

In addition, the process can also use some other function Spark provides to simplify programming process. For example,

after each iteration, the ants in each node in the cluster building a feasible solution will converge to the master node. This

program can use sortByKey () transfer function to composite the RDD data set, and then use fisrt() function to construct the

iterative ant colony optimal path sequence directly. According to the above ideas, we can use the Spark programming model

to achieve the parallel implementation of ant colony algorithm in the cloud computing cluster.

The specific process of Spark-ACO algorithm is shown in Fig. 2:

3.2. Nearest neighbor (NN)

In the running process of ant colony algorithm, the ants will select the next city according to the state transfer probability

P k ij (t) . If the choice of the next city every time depands on the probability, it is easy to make the algorithm go into a local
Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10 5

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

optimal solution. Therefore, the paper uses a nearest neighbor strategy: ants select the next city among the nearest w cities

randomly. If all w cities have been selected, select one in the rest cities which have not be passed.

3.3. Combined with genetic algorithm

In order to improve the quality of the solution, genetic algorithm is integrated into the algorithm. After the genetic

algorithm is integrated into the cluster, each single node also works according to the following steps:

1. After ant colony travels in each node, the traveling results of the city sequence will be treated as the initial population of

genetic algorithm (GA). Individual number of the initial population is equal to the number of ants, and each individual is

the tour city sequences of each ant. Each city sequence is corresponding to a cost value, and the cost value is individual

fitness of genetic algorithm.

2. Run the selection, crossover and mutation operators of genetic algorithm (GA).

3. Calculate and record the smallest individual MinGeti of genetic algorithm (GA).

4. If the minimum touring cost of ant colony is less than the minimum individual fitness value of genetic algorithm (GA), i.e.

Lenth[NumShortPathing] < NextColony[MinGeti] , and the smaller of the two values is less than the minimum value of last

iteration, update the smallest individual chromosomal sequences of genetic algorithm (GA) with ant colony optimization

path.

Else, update ant colony optimization path with the smallest individual chromosomal sequences of genetic algorithm (GA).

5. If the number of iterations is a prime number, the main process collects the optimal solutions of other processes, calcu-

lates the process number with the minimum value, and broadcasts the minimum value and path.

6. The main process outputs the optimal sequence of the cities in this iteration.

7. Other processes update the global pheromone matrix according to the formula (2).

8. If the number of iterations is another prime number, part of the chromosome sequences of GA will be updated by part

of the paths of ACO.

9. Repeat the process until the algorithm achieves the end condition.

4. Experimental results and analysis

4.1. Influence of spark cluster nodes on running time

When ant colony algorithm runs in cloud computing platform operation, communication collaboration between cluster

nodes needs certain time cost. So for a particular size of ant colony, increasing cluster node number in a certain extent can

reduce the running time of the algorithm. But when the cluster node quantity is greater than a critical value, the running

time of the algorithm increases instead. In view of this, the paper designs the following experiments to analyze the influence

of the number of cluster nodes on the running time of the ant colony algorithm.

The hardware environment of experiment is as follows: Lenovo sureserver of R680 G7, of which the server includes 4

processors and each has 8 nuclears, the frequency of CPU is 2.0GHZ, the memory capacity of server is 1024 G The software

environment of experiment is as follows: Linux operating system of RHEL6.4, Hadoop-1.2.1 and JDK 1.6.0. Based on the

hardware and software environments, we set up a Hadoop pseudo-distributed computing environment.

In the experiment, the parameters of ant colony algorithm based on past experience are set as follows: the number of

iterations N C = 100 . The number of ants m = 500, the pheromone evaporation coefficient ρ = 0.5, the heuristic information

factor α = 1.0, the expected heuristic factor β = 2.0, and pheromone intensity Q = 150. The number of executor Spark cluster

nodes are set to [1,5,10,15,20,25,30,35,40,45,50]. Experiments use TSPLIB library to provide example of the kroA100. For each

executor value, we run Spark-ACO algorithm 15 times, and then compute the average time. The experimental results are

shown in Fig. 3 , and the time unit is in milliseconds (ms).

We can see from Fig. 3: when the cluster node executor is set to 1, that is, when the Spark cluster has only one node, the

algorithm has the longest running time; when the number of cluster nodes is in executor [19] range, Spark-ACO algorithm

running on the Spark cluster spends the least time; and when the executor number is greater than 30, the running time of

Spark-ACO algorithm is significantly increased, which shows that when the number of cluster nodes is greater than a certain

critical value, the cost of communication between nodes in cluster Spark-ACO algorithm will rise. Therefore, the increase of

the number of cluster nodes can reduce the running time of the Spark-ACO algorithm. In case of ant colony size m = 500,

Spark cluster node is set to [19] which is most time saving.

4.2. The time cost of ACO, MRACO and Spark-ACO

In order to verify the time efficiency of MRACO and Spark-ACO algorithms, the paper designs the following experiments

to compare the running time of ACO, MRACO and Spark-ACO algorithms.

In this experiment, the algorithm MRACO is implemented in the Hadoop platform server, and the algorithm Spark-ACO

is implemented in the Spark platform server, while ACO algorithm runs in a stand-alone mode of an arbitrary servers which
Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

6 D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

Fig. 3. The relationship between the number of cluster nodes and the running time.

Table 1

The running time of ACO, MRACO and Spark-ACO.

Ant size ACO MRACO Spark-ACO

100 7397 12 ,012 10 ,857

300 21 ,878 15 ,534 13 ,316

500 35 ,773 18 ,922 14 ,905

700 50 ,901 23 ,653 16 ,941

900 66 ,819 29 ,404 17 ,369

1100 79 ,799 35 ,394 18 ,657

1300 94 ,837 40 ,934 19 ,692

1500 108 ,451 46 ,756 20 ,390

has the same configuration. The parameters of ant colony algorithm based on past experience are set as follows: the num-

ber of iterations N C = 100, pheromone evaporation coefficient ρ = 0.5, the heuristic information factor α = 1.0, the expected

heuristic factor β = 2.0, and pheromone intensity Q = 150. The number of executors of the Spark cluster nodes and the num-

ber of Map are all set to 15. Then select the TSPLIB library provided by the kroA100 instance of the experiment. In addition,

the size of the m value of ant colony is in [10 0, 30 0, 50 0, 70 0, 90 0, 110 0, 130 0, 150 0]. Respectively run the three algorithms

each 15 times for ant colony of each number, and average the running time (in millisecond), as shown in Table 1.

Table 1 shows: when the ant colony size is below 100, the running time of ACO is shorter than that of MRACO and Spark-

ACO; when the colony size is equal to 500, the running time of Spark-ACO can be saved by 21.22% compared to the time

cost of MRACO, and MRACO algorithm can save 47.1% than ACO; with the growth of colony size, the range that Spark-ACO

saves time increasingly exceeds that of algorithm MRACO; when the colony size is equal to 1500, Spark-ACO can save 56.39%

of the time compared to the algorithm MRACO, while MRACO saves 56.88% of the time compared to ACO. The running time

of above three algorithms is drawn into a broken line, as shown in Fig. 4:

In summary, when the colony size is small, the basic ant colony algorithm ACO in stand-alone mode can save more

time than MRACO and Spark-ACO algorithm. Because when the ant colony algorithm runs in a cluster, the starting cluster

nodes and the consumption communication between nodes account for a large proportion of the overall operation time.

With increased colony size, a cluster of parallel computation will gradually show the advantages over stand-alone mode.

However, due to the complexity of computing tasks, the differences between MRACO and Spark-ACO has been exposed. The

main reason is as follows. The MRACO algorithm is calculated based on the MapReduce framework, and the algorithm will

construct a feasible solution for key value pairs stored and transmitted in the cluster nodes between the ants. Each iteration

in the process of building a feasible solution needs a Map stage and a Reduce stage, in which Map stage records each ant

optimization process, and Reduce phase calculates each ant searching results between Map and Reduce. These two stages

inevitably need to transmit data and thus take a lot of time. On contrary, the Spark-ACO algorithm is calculated based on the

Spark framework and packages the ant colony in flexible distributed data RDD Set. The ant colony RDD is evenly distributed

in each node in the cluster, and makes good use of the characteristics of computational memory of spark platform. In each

iterative process, ant colony constructs the optimal solutions through a series of RDD conversion operations. Therefore, Spark

shows its advantages in computing based on memory and preventing data from landing. With the expansion of the colony

size, the algorithm Spark-ACO will save more time than the algorithm MRACO.
Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10 7

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

Fig. 4. The running time figure of ACO, MRACO and Spark-ACO.

Table 2

The operating results of ACO, MRACO and Spark-ACO.

TSP instances Spark-ACO Spark-ACO + NN Spark-ACO + NN + GA TSPLIB

berlin52 7592 7542 7542 7542

kroA100 21 ,939 21 ,292 21 ,282 21 ,282

ch130 6210 6132 6110 6110

kroB150 27 ,650 26 ,563 26 ,130 26 ,130

d198 17 ,033 16 ,032 15 ,780 15 ,780

rd400 18 ,004 16 ,010 15 ,493 15 ,281

rat783 10 ,832 9500 9498 8806

Fig. 5. The optimal result compare of Spark-ACO, Spark-ACO + NN, and Spark-ACO + NN + GA.

4.3. The accuracy of Spark-ACO, Spark-ACO + NN and Spark-ACO + NN + GA

In this paper, the method of the nearest neighbor strategy and hybriding genetic algorithm is proposed to optimize the

solution of the basic ant colony algorithm. In order to verify the improvement of the cooperative ant colony optimization

genetic algorithm compared to the basic ant colony algorithm for solving the quality of solution, an experiment is designed

as follows: ACO, MRACO and Spark-ACO are run to compare the results.

In the experiment, the parameters of ant colony algorithm based on settings in past experience are as follows: the

number of iterations N C = 300. The number of ants m = 200, the pheromone evaporation coefficient ρ = 0.5, the heuristic

information factor α = 1.0, the expected heuristic factor β = 2.0, and the pheromone intensity Q = 150. In addition, the paper

selects examples of berlin52, kroA100, ch130, kroB150, d198, rd400 and rat783 for experiments. For each TSP instance, the

three algorithms are run 15 times, and the optimal solution and the TSPLIB provided by the three algorithms are compared.

The experimental results are shown in Table 2:

Based on the solutions we draw a column chart, as shown in Fig. 5:

Fig. 5 shows: Spark-ACO + NN and Spark-ACO + NN + GA get the same optimal solution 7542 in berlin52. While in the

calculation of five instances from berlin52 to d198, Spark-ACO + NN + GA has reached the optimal solution provided in TSPLIB

[20] . The paper draws the optimal solution path graph of Spark-ACO + NN + GA, as shown in Figs. 6 and 7.
Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

8 D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

Fig. 6. The optimal solution of Spark-ACO + NN + GA for berlin52.

Fig. 7. The optimal solution of Spark-ACO + NN + GA for kroA100.

(

(

(

In this chapter, we introduce the design of the experiments. Firstly, it is proved that the increase of the number of cluster

nodes does not reduce the running time of the ant colony algorithm. Then, by contrasting running time and path search

results using different instances of the TSPLIB of Spark-ACO, Spark-ACO + NN, and Spark-ACO + NN + GA, the experiments show

that, compared to the ACO algorithm, MRACO greatly shortens the operation time, and Spark-ACO algorithm obtains a bet-

ter running speed than MRACO. In addition, compared to the path searching of Spark-ACO algorithm, Spark-ACO + NN + GA

algorithm has greatly improved the quality of solutions.

5. Conclusion and discussion

According to the fact that a single machine cannot bear the calculation time of a large scaled traveling salesman problem,

the basic ant colony algorithm is designed and implemented under MapReduce and Spark. Compared with the stand-alone

basic ant colony system, the time of MapReduce basic ant colony algorithm has been reduced; compared with MRACO, the

time of Spark platform basic ant colony has also been greatly reduced. In order to improve the accuracy of the solution, the

NN strategy and GA are designed to be added in the Spark-ACO, and the accuracy of the solution is greatly improved.

The paper focuses on combining improved ant colony algorithm with parallel computing framework Spark, which im-

proves the ant colony algorithm in cloud computing cluster at the running speed. However, the improved ant colony algo-

rithm for the exact solution is not enough, because some of the examples haven’t got the optimal solutions yet. Therefore,

there are still many deficiencies in the accuracy of the ant colony algorithm. Next, we need to make effort s in the f ollowing

aspects.

1) Research on the other intelligent algorithms, and use their advantages to make up the shortcomings of the ant colony

algorithm and improve the precision of the ant colony algorithm, so as to get a better path optimization results.

2) Further study the operation principle of Spark parallel computing model and design the parallel ant colony algorithm

more skillfully, so that it can run better and faster in the cloud computing cluster.

3) Apply ant colony algorithm based on Spark platform to the practical field, such as biological information computing, job

scheduling, network routing and other fields, in order to solve practical problems more efficiently.

Acknowledgement

This research was financially supported by Chinese Natural Science Foundations (61363016 , 61063004), Key Project of

Inner Mongolia Advanced Science Research (NJZZ14100), Inner Mongolia Colleges and Universities Education Department
Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10 9

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

Science Research (NJZC059), Natural Science Foundation of Inner Mongolia Autonomous Region of China (NO. 2015MS0605 ,

NO. 2015MS0626 and NO. 2015MS0627) and Ministry of Education Scientific research foundation for Study abroad personel

[2014] 1685.

References

[1] Schrijver A . On the history of combinatorial optimization (Till 1960)[J]. In: Handbooks in operations research & management science, 12; 2005. p. 1–68 .
[2] Colorni A , Dorigo M , Maniezzo V . Distributed optimization by ant colonies[C]. In: Proceedings of the 1st european conference on artificial LIFE. Elsevier

Publishing; 1991. p. 134–42 .

[3] Dorigo M , Gambardella M . A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans Evol Comput 1997;1(1):53–66 .
[4] Dorigo M . Ant colonies for the traveling salesman problem[J]. Biosystems 1997;43(2):73–81 .

[5] Holland JH . Adaptation in natural artificial systems [M]. MIT Press; 1975. p. 1–17 .
[6] Kennedy J , Eberhart R . Particle swarm optimization[C]. In: IEEE international conference on neural networks, 1995. Proceedings, vol. 4; 1995. p. 1942–8 .

[7] Li X , Zheng A , Zhang X , Li C , Li Z . Rolling element bearing fault detection using support vector machine with improved ant colony optimization[J].
Measurement 2013;46(8):2726–34 .

[8] Pan D., Yang C. An improved ant colony optimization for vehicle routing problem with time windows, logistics sci-tech, 2014.

[9] Dhawan C , Kumar Nassa V . Review on vehicle routing problem using ant colony optimization[J]. Int J Adv Res Comput Sci 2014 .
[10] Eftekhari M , Zeinalkhani M . Extracting interpretable fuzzy models for nonlinear systems using gradient-based continuous ant colony optimization

(GCACO)[J]. Fuzzy Inf Eng 2013;5(3):255–77 .
[11] Chen YJ , Wong ML , Li H . Applying ant colony optimization to configuring stacking ensembles for data mining[J]. Expert Syst Appl 2014;41(6):2688–702 .

[12] Arora V , Ravi V . Data mining using advanced ant colony optimization algorithm and application to bankruptcy prediction[J]. Int J Inf Syst Soc Change
2013;4(3):33–56 .

[13] Johnson TV , Abbasi A , Kleris RS , Ehrlich SS , Barthwaite E . Segmentation and edge detection based on modified ant colony optimization for iris image

processing. J Artif Intell Soft Comput Res 2013;3(2):133–41 .
[14] Feng D , Zhang F , Zeng Q , Wang Q , Li C . Medical image processing and management based on ant colony optimization and support vector machine[J].

Int J Adv Comput Technol 2012;4(18):608–15 .
[15] Thukaram P , Saritha SJ . Image edge detection using improved ant colony optimization algorithm[J]. Ijrcct 2013;2(11) .

[16] Lee SG , Jung TU , Chung TC . An effective dynamic weighted rule for ant colony system optimization[C]. In: Evolutionary computation, 2001. Proceedings
of the 2001 congress on, vol. 2; 2001. p. 1393–7 .

[17] Gambardella LM , Dorigo M . Q: a reinforcement learning approach to the traveling salesman problem – machine learning proceedings 1995 - Ant[J].

Mach Learn Proc 20 0 0;170(3):252–60 .
[18] Gutjahr WJ . A graph-based ant system and its convergence[J]. Fut Gener Comput Syst 20 0 0;16(8):873–88 .

[19] Aharia M , Das T , Li H . Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters[C]. In: Usenix conference on
hot topics in cloud ccomputing; 2012. p. 10-10 .

[20] TSPLIB[EB / OL].[2016-03-31]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp .
Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0001
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0001
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0002
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0002
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0002
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0002
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0003
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0003
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0003
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0004
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0004
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0005
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0005
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0006
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0006
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0006
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0007
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0007
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0007
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0007
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0007
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0007
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0008
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0008
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0008
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0009
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0009
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0009
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0010
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0010
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0010
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0010
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0011
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0011
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0011
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0012
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0012
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0012
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0012
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0012
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0012
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0013
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0013
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0013
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0013
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0013
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0013
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0014
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0014
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0014
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0015
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0015
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0015
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0015
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0016
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0016
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0016
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0017
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0017
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0018
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0018
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0018
http://refhub.elsevier.com/S0045-7906(16)30435-9/sbref0018
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

10 D. Gaifang et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: CAEE [m3Gsc; October 6, 2016;12:5]

Dong Gaifang received her B. Sc . and M. Sc . degrees both in computer science from Inner Mongolia Normal University and GuiZhou University in 2002 and
2005. She is currently a Ph.D. student and an Associate Professor at the College of Computer and Information Engineering in the Inner Mongolia Agricultural

University. Her research interests include bioinformatics computing, computational intelligence and parallel computing.

Fu Xueliang received his M. Sc . and Ph.D. degrees in software engineering from DALIAN University of Technology in 2005 and 2008 in China. Currently, he
is a professor and the vice dean in the College of Computer and Information Engineering at Inner Mongolia Agricultural University in China. His research

interests include Intelligent Computation, Data Mining and Big Data Processing.

Li Honghui received the B. Sc ., M. Sc . and Ph.D. degrees all in computer science from Electronic Technology University, China, Inner Mongolia University,
China and Concordia University, Canada in 1992, 2002, and 2012. She is currently a professor in Computer science & technology at Inner Mongolia Agricul-

tural University, China. Her research interests include network optimization algorithms, routing algorithms and network planning.

Xie Pengfei graduated from the Zhengzhou University in 2013 and received his B. Sc . degree in software engineering. In July 2016, he received his M. Sc .
degree in Computer Application Technology from the Inner Mongolia Agricultural University. Currently, he is a software engineer in Beijing. His research

interests include biological information computing, parallel computing and big data processing.
Please cite this article as: D. Gaifang et al., Cooperative ant colony-genetic algorithm based on spark, Computers and

Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

http://dx.doi.org/10.1016/j.compeleceng.2016.09.035

	Cooperative ant colony-genetic algorithm based on spark
	1 Ant colony optimization algorithm
	2 Ant colony optimization based on mapreduce (MRACO)
	3 Ant colony based on spark (Spark-ACO) and combined with genetic algorithm
	3.1 Ant colony based on spark (Spark-ACO)
	3.2 Nearest neighbor (NN)
	3.3 Combined with genetic algorithm

	4 Experimental results and analysis
	4.1 Influence of spark cluster nodes on running time
	4.2 The time cost of ACO, MRACO and Spark-ACO
	4.3 The accuracy of Spark-ACO, Spark-ACO+NN and Spark-ACO+NN+GA

	5 Conclusion and discussion
	 Acknowledgement
	 References

