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Abstract

The aggregation of preferences (expressed in the form of rankings) from mul-
tiple experts is a well-studied topic in a number of fields. The Kemeny
ranking problem aims at computing an aggregated ranking having minimal
distance to the global consensus. However, it assumes that these rankings
will be complete, i.e., all elements are explicitly ranked by the expert. This
assumption may not simply hold when, for instance, an expert ranks only
the top-K items of interest, thus creating a partial ranking. In this paper
we formalize the weighted Kemeny ranking problem for partial rankings, an
extension of the Kemeny ranking problem that is able to aggregate partial
rankings from multiple experts when only a limited number of relevant el-
ements are explicitly ranked (top-K), and this number may vary from one
expert to another (top-Ki). Moreover, we introduce two strategies to quan-
tify the weight of each partial ranking. We cast this problem within the
realm of combinatorial optimization and lean on the successful Ant Colony
Optimization (ACO) metaheuristic algorithm to arrive at high-quality solu-
tions. The proposed approach is evaluated through a real-world scenario and
190 synthetic datasets from www.PrefLib.org. The experimental evidence
indicates that the proposed ACO-based solution is capable of significantly
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outperforming several evolutionary approaches that proved to be very effec-
tive when dealing with the Kemeny ranking problem.

Key words: Kemeny ranking problem, partial rankings, weighted
aggregation, swarm intelligence, ant colony optimization.

1. Introduction1

The aggregation of preferences from multiple experts is a well-studied2

topic in a number of fields such as economic theory (properties of a social3

choice function under elevation of pairs) [1], social choice theory (preference4

aggregation from a small subset of critical nodes in social networks) [2], multi-5

criteria decision making (group decision making) [3], machine learning [4]6

(evolutionary voting in classifier ensembles), multi-agent systems (reaching7

consensus in high-dimensional linear systems) [5] or computational biology8

(consensus genetic mapping) [6].9

When these preferences are elicited in the form of N rankings over M10

objects/items (where each ranking denotes the preference of a single expert),11

the goal is to build a consensus (aggregated) ranking that reflects the set of12

individual preferences as faithfully as possible. Several methods to aggregate13

the ranking preferences of multiple voters have been proposed in the litera-14

ture [7] [8] [9] [10]. Arrow’s axioms [11] state, however, that no aggregation15

method could simultaneously satisfy three fairness criteria: non-dictatorship16

(the voting results cannot simply mirror that of any single person’s prefer-17

ences without consideration of the other voters), Pareto efficiency (if every18

individual prefers a certain option to another, then so must the resulting soci-19

etal preference order) and independence of irrelevant alternatives (changes in20

individuals’ rankings of irrelevant alternatives –ones outside a certain subset–21

should have no impact on the societal ranking of the subset).22

In spite of the above result, it is still possible to compute an aggregated23

ranking having minimal distance to the global consensus. This ranking is re-24

ferred to as the Kemeny ranking [12] [13] and interpreted as a maximum likeli-25

hood estimator of the “correct” ranking. Unfortunately, the Kemeny ranking26

is NP-hard to calculate. The study in [14] thoroughly investigates different27

optimization methods (exact and approximate algorithms) for computing the28

Kemeny ranking. The authors concluded that heuristic approaches are rec-29

ommended in contexts having weak or no consensus. More recently, Aledo30

et. al. [15] resorted to evolutionary algorithms to come to grips with this31
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challenging problem. Their results outperformed the remaining tested algo-32

rithms. Nevertheless, the proposed model is thought of for complete rankings33

(i.e., those in which each element is explicitly ranked) and cannot be directly34

applied to the aggregation of incomplete (partial) preferences, i.e., where35

only a subset of the available items is explicitly ranked. In this paper, we36

investigated two types of partial rankings that could be described as follows:37

1. Top-K rankings: All respondents exactly select K relevant factors,38

whereas the remaining factors are placed at the K+1 position. In this39

kind of partial ranking, ties into the top-K ranked positions are not40

allowed.41

2. Top-Ki rankings: Each respondent Ri is free to select Ki relevant fac-42

tors that may be partially or completely ordered, whereas the remaining43

factors are placed at the Ki+1 position. In this scenario, tied factors44

into the top-Ki ranked positions could be observed.45

This paper brings forth the following contributions. (1) We address the46

weighted aggregation of the two previous types of partial rankings from mul-47

tiple experts by formulating the weighted Kemeny ranking problem for partial48

rankings, an extension of the Kemeny ranking problem that is able to ag-49

gregate top-K and top-Ki partial rankings from multiple experts. (2) We50

cast this problem into the realm of combinatorial optimization and lean on51

Ant Colony Optimization (ACO) [16], one of the most popular Swarm Intel-52

ligence [17] schemes, as the underlying optimization engine. In this scheme,53

we proposed two improved rules to compute the heuristic information used54

by ants to select the next state. (3) We introduce two heuristic strategies55

to derive the weight of each partial ranking in presence of subjective expert56

information (i.e., a set of predefined categories) or in its absence. In the first57

strategy, the weight is calculated from the fuzzy membership grade of each58

partial ranking to a set of predefined categories. If these predefined cate-59

gories are not available, then the weight is computed as the ratio of non-tied60

items included in the partial ranking. (4) We conduct an extensive empirical61

analysis by comparing our solution against 11 other methods (two simple62

greedy techniques and 9 evolutionary optimizers) using a real-world scenario63

wherein Belgian respondents rank different aspects of potential employers,64

and 190 synthetic datasets taken from www.PrefLib.org. The empirical65

evidence indicates that the ACO-based approach is capable of significantly66

outperforming the other models for datasets under consideration.67
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The rest of the article is organized as follows. Section 2 briefly examines68

the Kemeny ranking problem and discusses several methods for aggregat-69

ing partial rankings. Section 3 elaborates on a weighted extension of the70

Kemeny rule for aggregating partial rankings while Section 4 goes over the71

ACO fundamentals and revisits the three most prevalent models. Section72

5 is concerned with tailoring ACO to solve the weighted Kemeny ranking73

problem, including the learning of the heuristic information matrix from the74

available data. Two heuristic strategies to compute the weight of each par-75

tial ranking are described in Section 6. The empirical study carried out to76

validate the proposed approach is unveiled in Section 7. Conclusions and77

future work directions are outlined in Section 8.78

2. Related work and remaining challenges79

This Section briefly reviews relevant works related to voting rules, the80

Kemeny ranking problem for complete rankings as well as other approaches81

for the aggregation of partial rankings.82

2.1. Voting rules and Kemeny ranking problem for complete rankings83

A voting rule, a.k.a rank aggregation rule, takes as input multiple rankings84

over the same element set and produces as outcome either a single element85

(the winner) or a consensus ranking of these elements [13].86

Among the many different voting rules proposed in the literature [18], the87

plurality rule is perhaps one of the best known and most often applied scoring88

rules. This rule ranks items by the frequency with which they are placed first89

in the rankings. One may notice that other important considerations present90

in each ranking are simply disregarded by this procedure.91

The Borda rule is another scoring rule. Each candidate earns as many92

points as the number of candidates ranked lower than himself. The winner93

is the one with the most points.94

The single transferable vote rule goes through a series of M − 1 rounds,95

each one eliminating the element with the lowest plurality score from every96

ranking. The last remaining element is the winner.97

The Bucklin rule computes a score for each element that is based on the98

number of voters that ranked it among the top-K candidates. An element99

“passes the post” if it is selected within the lowest K elements by at least100

half of the voters. Ties are broken by the number of votes by which the post101

is passed.102
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The maximin rule ranks elements after a score based on pairwise counts103

of the number of votes that placed that element higher than another element.104

The Copeland rule also follows a score but this time an element earns/loses105

a point for every pairwise election it wins/loses.106

The ranked pairs rule also returns a ranking based on an ordering of all107

element pairs (a,b) according to the number of voters that prefer a over b.108

Another well-studied rule is the Kemeny rule [12] [15], which operates on109

complete rankings. This rule yields a ranking that maximizes the number of110

pairwise agreements among the individual rankings (votes), where a pairwise111

agreement is reached whenever the ranking agrees with one of the votes on112

which a pair of candidates is ranked higher [13]. More formally, given a set113

of N rankings X = {X1, X2, ..., XN} over M elements, the Kemeny ranking114

problem is concerned with finding the ranking X∗ that satisfies Equation (1),115

where P stands for the set of all possible permutations over M elements116

(there are M ! possible permutations) and K(Xi, Y ) denotes the Kendall-117

Tau distance between Xi and Y . The resultant ranking X∗ is called the118

Kemeny ranking of the set and construed as the one minimizing the number119

of disagreements among all rankings in X [15].120

X∗ = argmin
Y ∈P

1

N

N∑

i=1

K(Xi, Y ) (1)

2.2. Methods for aggregating partial rankings121

González-Pachón and Romero [19] approach the aggregation of quasi or-122

ders (i.e., incomplete ordinal rankings) as a consensus search by using dis-123

tance functions. Interval goal programming (IGP) is presented as their solver124

of choice that tries to establish a weak consensus over incomplete ordinal125

rankings.126

Klementiev et. al. [20] proposed a rank aggregation method for both127

permutations and top-K lists where they account for the type of the ele-128

ments being ranked, i.e., they could belong to different data domains, so as129

to include the notion of domain expertise. Given only a set of constituent130

rankings, they learn an aggregation function that attempts to recreate the131

true ranking without labeled (type) data. The method is based on a mixture132

of distance-based models and leans on the Expectation-Maximization (EM)133

algorithm to estimate its parameters. The new technique significantly and134

robustly outperformed their previous domain-agnostic model [21].135
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Ammar and Shah [22] consider partial data in the form of first-order136

or comparison marginals. They treat this information as partial samples137

from an unknown distribution over permutations and provide an efficient138

algorithm for finding an aggregate complete ranking directly from the data139

without first learning the underlying distribution; this is an appealing feature140

for designing large-scale ranking systems such as recommendation systems.141

Neghaban et. al. [23] remarked that the approach in [22] requires in-142

formation about comparisons between all element pairs, and for each pair143

it requires the exact pairwise comparison marginal w.r.t the underlying per-144

mutation distribution. This assumption is not always easy to meet since,145

in reality, all pairs of items are not usually compared. The authors then146

propose an algorithm that takes as input the noisy comparison marginals for147

a subset of all possible item pairs and spits out scores for each item. The148

noise in the underlying permutation distribution is modeled after the Multi-149

nomial Logit (MLN) method [24]. Their algorithm has a natural random150

walk interpretation over the graph of objects with edges present between151

two objects if they are compared; the scores turn out to be the stationary152

probability of this random walk. The empirical analysis indicates that the153

proposed scheme performs comparably to the maximum likelihood estimator154

of the MLN model and outperforms the technique in [22].155

Brandenburg et. al. [25] studied the aggregation of partial rankings156

under the nearest neighbor (NN) and Hausdorff versions of the Kendall-Tau157

distance. They proved that this problem is NP-complete under the NN158

Kendall-Tau distance even for two voters and that, in contrast, it is NP-159

hard and coNP-hard under the Hausdorff Kendall-Tau distance for at least160

four voters.161

2.3. Remaining challenges162

In spite of the Arrow’s impossibility theorem, researchers continue ad-163

dressing the aggregation of several preferences by solving the Kemeny rank-164

ing problem. Young and Levenglick [26] show that the Kendall distance (and165

consequently its extensions) is the only distance function ensuring the per-166

mutation(s) minimizing the Kemeny ranking problem have three desirable167

properties of being neutral, consistent and Condorcet. The Condorcet prop-168

erty means that, if there exists a permutation such that the order of every169

pair of elements is the order preferred by the majority, then that permu-170

tation has minimum distance to the voters’ permutations. Therefore, the171
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main challenge towards this goal lies on the performance of the discrete op-172

timizer used when solving the related combinatorial problem. On the other173

hand, there exist situations for which rankings are partial and therefore, the174

classical Kendall-Tau distance is no longer suitable.175

The second challenge refers to the inclusion of the weighted approach176

when aggregating partial rankings and the automatic estimation of the mem-177

bership degree of a ranking to the population. Recently Nápoles et al. [27]178

proposed a two-step methodology to build fuzzy prototypes from a popula-179

tion of partial rankings. Being more explicit, in the first step the authors180

put forth a fuzzy clustering algorithm for partial rankings called fuzzy c-181

aggregation, while the second step is focused on solving the extended Ke-182

meny ranking problem for each discovered cluster taking into account the183

estimated partition matrix. Despite the novelty of this approach, the reader184

may notice that this algorithm will produce c different aggregations, with c185

being the number of clusters detected by the clustering algorithm. However,186

the clustering approach may not be adequate for some scenarios where a sin-187

gle aggregated solution is expected. This implies that other approaches to188

compute the membership degrees of partial rankings are required.189

3. Weighted aggregation of partial rankings190

In this section we extend the well-known Kemeny ranking problem [12]191

by considering that orderings to be clustered may be incomplete or partial192

(i.e., tied elements are allowed). Besides, we assume that each partial or-193

dering Xi has an associated weight ωi ∈ [0, 1] representing the extent to194

which the ranking belongs to the population. Formally, the weighted Ke-195

meny ranking problem for partial rankings could be summarized as follows.196

Let X = {X1, ..., Xi, ..., XN} be a set of N partial rankings over M items197

F = {F1, ..., Fl, ..., FM} where the ith ranking comprises the vote of a single198

respondent with weight ωi ∈ [0, 1]. More explicitly, we can describe a partial199

ranking Xi as a vector {X1
i , ..., X

k
i , ..., X

M
i } where Xk

i � Xk+1
i denotes that200

Xk
i precedes Xk+1

i . The theoretical challenge is to construct a fair enough201

ranking Y taking into account all input (potentially partial) rankings and202

their weights. It should be mentioned that the solution for the weighted203

Kemeny ranking problem is a complete ranking, and therefore ties are not204

allowed.205

Being more explicit, the solution for the weighted Kemeny problem is206

equivalent to computing a complete ranking with minimal distance to the207
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global consensus. Equation (2) formalizes the objective function to be min-208

imized, where H(Xi, Y ) represents a distance function quantifying the dis-209

similarity between the ith partial ranking and the candidate solution Y to210

be evaluated.211

min→ F(Y ) =
∑

Xi∈X
ωiH(Xi, Y )

/∑

i

ωi (2)

The reader may notice that the first modification to the standard Kemeny212

ranking problem lies on the inclusion of the weight quantifying the extent to213

which the ith ranking belongs to the population. The second modification214

is related to the normalized distance function H(., .) to compute the dis-215

similarity degree between two rankings with tied elements. Notice that the216

standard Kemeny ranking problem uses the Kendall-Tau distance [28], which217

measures the dissimilarity as the number of item pairs over which the two218

rankings disagree. However, the original Kendall-Tau distance is no longer219

adequate when comparing rankings having tied items since this distance as-220

sumes that items are all ordered. Instead, we could adopt other versions221

of the Kendall-Tau distance or other extended dissimilarity measures such222

as the Hausdorff distance [29], the Spearman’s footrule distance [30] or the223

Goodman-Kruskal’s one [31]. Having several metrics for partial rankings is224

obviously convenient, but it poses the question of which one would be better225

suited when comparing partial rankings when solving the Kemeny ranking226

problem.227

The Goodman-Kruskal’s approach is not always defined and thus there228

could be scenarios where this procedure fails. Moreover, Fagin et al. [32]229

mathematically proved that the Hausdorff variants of the Kendall-Tau dis-230

tance and the Spearman’s footrule distance are actually equivalent. This out-231

come was based on the Diaconis-Graham inequality [33], which asserts that232

the Kendall-Tau distance and the Spearman’s footrule distance are within a233

factor of two from each other. It implies that selecting a distance function234

does not matter so much when solving the weighted Kemeny ranking prob-235

lem, as long the distance function is capable to deal with partial rankings.236

In this paper we use the Hausdorff version of the Kendall-Tau distance237

as the dissimilarity functional when aggregating partial rankings. The Haus-238

dorff distance has been extensively studied and shown to have particularly239

flexible mathematical and algorithmic properties [32]. Equation (3) formal-240

izes this distance, where Xi is the ith partial ranking, Y denotes the Kemeny241

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ranking to be evaluated, K(Xi, Y ) is the set of all item pairs that appear in242

different order, R1(Xi, Y ) is the set of all item pairs which are tied in Xi243

but not tied in Y , while R2(Xi, Y ) is the set of all item pairs which are tied244

in the ranking Y but not tied in the ith partial ranking. This function can245

also be adopted for comparing full rankings, thus leading to the Kendall-Tau246

distance (i.e., R1(Xi, Y ) = R2(Xi, Y ) = 0).247

H(Xi, Y ) = |K(Xi, Y )|+ max {|R1(Xi, Y )|, |R2(Xi, Y )|} (3)

The inclusion of the Hausdorff distanceH(Xi, Y ) in the objective function248

(2) allows computing the dissimilarity between each input ranking and the249

candidate (complete) aggregated ranking. Due to the fact that Y is a full250

ranking, we could compute H(Xi, Y ) = |K(Xi, Y )| + |R1(Xi, Y )|. This is251

possible because there are no tied items in a full ranking (i.e., |R2(Xi, Y )| =252

0). On the other hand, the reader may verify that |R1(Xi, Y )| =
(
M−Ki

2

)
253

where Ki is the number of relevant items selected by the ith respondent.254

Notice that we assume partial rankings with non-homogeneous tied factors,255

since there are scenarios where each respondent may select a different number256

of relevant items. Equation (4) shows the normalized objective function to257

be optimized.258

min→ F(Y ) =

(∑

Xi∈X

2ωi
[
|K(Xi, Y )|+

(
M−Ki

2

)]

M(M − 1)

)/∑

i

ωi (4)

Equation (4) involves a NP-hard problem with a search space comprised259

of M ! possible states (i.e., the set of all permutations over M items). In or-260

der to deal with the computational intractability of this weighted aggregation261

problem, Nápoles et al. [34] proposed a novel approach based on Swarm Intel-262

ligence that exploits a colony of artificial ants. However, this approach does263

not take into account the weight of partial rankings. Recently, Nápoles et al.264

[27] extended the crisp method in order to construct prototypes from fuzzy265

information granules discovered by a clustering algorithm. Before describing266

the details of this procedure, next we provide a basic background about Ant267

Colony Optimization that will be used to solve the weighted Kemeny ranking268

problem formulated before.269
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4. Ant Colony Optimization270

The generation of feasible permutations representing complete rankings271

is entrusted in this study to the ACO methods. The objective function272

in Equation (4) evaluates the quality of each candidate solution (ant tour)273

during the search process.274

The ACO metaheuristic is a biologically-inspired search technique that275

was originally devised to solve combinatorial optimization problems [16]. Its276

creator, Marco Dorigo, drew inspiration from the manner in which ants cor-277

porately forage. They depart from the nest and once a source of food is iden-278

tified, they deposit a chemical substance on the ground named pheromone279

on their way back to the nest; these pheromone trails serve to guide the280

rest of the colony towards the food source [35]. ACO is one of the hallmark281

swarm intelligence algorithms and bears a plethora of successful applications282

to real-world problems [36] [37] [38].283

ACO is a fully constructive model where each ant builds a candidate so-284

lution to the problem by incrementally exploring the nodes (or edges) of a285

search graph. Each artificial ant moves from one state to another during286

the search process (here states are components of the solution). As depicted287

in Equation (5), the likelihood of moving from one node to another (ACO288

transition rule) at the next discrete time step t+1 mainly rests on two param-289

eters: (1) the collective information τkl(t) derived from the pheromone trails290

and iteratively updated by ants during the navigation of the search graph291

and (2) the heuristic information ηkl denoting the invariant, problem-specific292

preference of moving from one state to another. The heuristic component293

must be carefully provided/estimated as it is treated as an invariant, i.e., it294

is not modified throughout the algorithm’s execution.295

P v
kl(t+ 1) =

[τkl(t)]
α[ηkl]

β

∑

r∈N v
k

[τkr(t)]
α[ηkr]

β
, l ∈ N v

k (5)

In light of the Kemeny ranking problem, Equation (5) denotes the prob-296

ability of accepting the lth state (i.e., next factor to be ranked) at the kth297

position of the candidate ranking, N v
k is the set of unvisited states (factors)298

at the kth position for the vth ant while α and β govern the strength of the299

collective and heuristic information, respectively.300

Once the individual ant tours are completed, the pheromone levels on301

all trails using the solutions found by the agents will be updated. First,302
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pheromone evaporation takes place uniformly thus reducing the amount of303

pheromone on all trails. Subsequently, certain pheromone amount will be304

added to the nodes/edges of the more promising solution(s). This is a very305

important step in any ACO-based implementation; most of ACO variants306

differ mainly in the strategy used for updating the collective information307

(pheromone trails) at each iteration. In the sequel we will discuss the three308

most popular ACO algorithms.309

4.1. Ant System310

Ant System (AS) is credited with being the first ACO algorithm [39].311

The pheromone trails are updated once all ants have completed their tours.312

A certain portion of the pheromone in each trail is evaporated according to313

a factor 0 < ρ < 1. Afterwards, each ant v deposits a pheromone amount314

∆τ vkl proportional to the quality of its solution along the edges belonging to315

it. This pheromone update rule is reflected in Equation (6), with S being316

the number of ants in the colony.317

τkl(t+ 1) = (1− ρ)τkl(t) +
S∑

v=1

∆τ vkl (6)

The long-term effect of the above rule is that edges not frequently chosen318

by the ants will see their pheromone concentration gradually vanish whereas319

those edges selected by the ants will receive a boost in their pheromone320

amount, thus becoming more probable candidates for selection in future it-321

erations. A more thorough study [39] revealed that better results could be322

attained if the pheromone increase is only applied by the global best solution323

rather than having all colony members do so. In spite of that, AS suffers from324

stagnation (convergence to local optima) due to the unbounded accumulation325

of pheromone over the best found edges.326

4.2. Ant Colony System327

Ant Colony System (ACS) improves the AS scheme by exploiting the328

global best solutions found during the search stage [40]. As a result, the329

algorithm exhibits superior exploitation features as ants build their solutions,330

instead of exploring new areas of the solution space. This goal is achieved via331

a three-fold mechanism: (1) a strong elitist strategy for updating pheromone332

trails, (2) a modification to the pheromone update rule and (3) a pseudo-333

random rule for selecting new states.334
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ACS’ pheromone update rule is reported in Equation (7), with τ ∗kl(t)335

denoting the pheromone amount associated with the ant featuring the best336

heuristic value at time step t. Like in AS, pheromone evaporation affects all337

edges yet the boost is only reserved for those edges belonging to the best338

solution.339

τkl(t+ 1) = (1− ρ)τkl(t) + ρτ ∗kl(t) (7)

ACS’ pseudo-random proportional rule in Equation (8) aims at fostering340

exploitation of the knowledge attained by the colony. In a nutshell, if a341

random number q ∼ U(0, 1) falls below q0 then the ant will move to the342

state maximizing the product between collective and heuristic information,343

otherwise ACS will adopt the standard decision rule in Equation (5). Notice344

that q0 is a user-defined parameter that favors exploitation over exploration345

as it approaches 1.346

l = argmax
r∈N v

k

{
[τkl(t)]

α[ηkl]
β
}

if q ≤ q0 (8)

The third distinctive element in the ACS model is the iterative pheromone347

update rule ants employ as they build their solution, as shown in Equa-348

tion (9). This approach has the same effect as decreasing the probability349

of selecting the same path for all ants, thus introducing a balance between350

exploitation and exploration.351

τkl(t+ 1) = (1− ρ)τkl(t) + ρτ ∗kl(0) (9)

The ACS algorithm frequently reports better performance than AS owing352

to its emphasis on the exploitation of the most promising solutions discovered353

by the colony.354

4.3. MAX-MIN Ant System355

Like ACS, the MAX-MIN Ant System (MMAS) [41] was specifically en-356

gineered to pursue a stronger exploitation of solutions, thus avoiding the357

stagnation problems encountered by AS. This model has the following fea-358

tures: (1) similar to ACS, a strong elitist strategy regulates the ant allowed359

to update the pheromone trails (either the best-so-far ant or the one with the360

best solution in the current iteration); (2) all pheromone trails are bound to361

the range [τMIN , τMAX ]. If τMIN > 0 for all solution components, then the362
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probability of choosing a specific state will never be zero, which avoids stag-363

nation configurations. Finally, pheromone trails are initialized with τMAX364

to ensure further exploration of the search space at the beginning of the365

optimization phase.366

MMAS has also reported very encouraging results in the literature, even367

outperforming ACS [42] [36].368

5. Solving the weighted Kemeny ranking problem369

In this section we explain how to optimize the objective function defined370

in Section 3 by exploiting a colony of artificial ants. With this goal in mind,371

we defined four central components:372

• The structure of the pheromone graph used by ants to construct the373

solutions.374

• The interpretation of the probabilistic rule to select the next state.375

• The formal definition of the set of feasible states at each step.376

• The estimation of the heuristic information.377

As mentioned, the goal of the search method is to produce a complete378

ranking (i.e., a permutation over M different factors) minimizing the ob-379

jective function (4). This problem is similar to the well-known Traveling380

Salesman Problem [43] where artificial agents construct the candidate solu-381

tion by traveling along a fully connected graph. The graph nodes correspond382

to the M elements F = {F1, ..., Fl, ..., FM} to be ordered. Due to the fact383

that a solution to the weighted Kemeny ranking problem is a permutation384

of such M items, each item Fl will appear exactly once. This suggests that385

self-connected graph nodes are not allowed, otherwise the Kemeny ranking386

may involve explicit tied items. However, a Kemeny ranking might comprise387

implicit tied items (i.e., items that may be freely exchanged without altering388

the heuristic value) which is a result of frequent ties over the same two items.389

In the proposed scheme, the transition value Pkl is the probability of390

accepting the lth item at the kth ranking position. This approach is slightly391

different from other scenarios where the transition value Pkl often denotes392

the probability of moving to the lth graph node from the kth node. In393

practice, both approaches are equivalent because the probability of accepting394
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the lth ranking item at the kth position will eventually be influenced by those395

ranking items situated at the previous (k−1) positions. From this remark we396

can formally define the set of feasible states for the vth ant at each step k. The397

domain set N v
k ⊆ F is given by N v

k = {F1, ..., Fl, ..., FM}−{Y 1
v , Y

2
v , ..., Y

k−1
v }398

where Y k−1
v represents the item located at the (k − 1) ranking position,399

according to the vth agent. Being more explicit, all previously ranked items400

are no longer part of the neighborhood of the ant at the kth step. This401

ensures the unicity of ranking items in the solution for the Kemeny ranking402

problem.403

Another important aspect when solving combinatorial problems using404

ACO-based algorithms is the estimation of the heuristic matrix. The accu-405

rate estimation of the heuristic component often leads to high-quality solu-406

tions, otherwise the solutions to the weighted Kemeny ranking problem will407

probably be sub-optimal. In the following sections we propose two strate-408

gies to estimate the heuristic matrix from input data, assuming two partial409

ranking aggregation scenarios.410

5.1. Weighted aggregation of multiple top-K rankings411

The first scenario takes place when each respondent selects the top-K412

items. It implies that each input ranking will be partial in the sense that413

only the top-K items are explicitly ranked, whereas the other M −K items414

are tied at the K+1 position. It can be noticed that estimating the heuristic415

values for the M items across the first K positions is equivalent to computing416

the number of observations on which the lth element was observed at the kth417

position (k = 1, 2, ..., K). For the M −K last positions, this heuristic cannot418

be directly used since such items are tied. However, we may compute the419

number of observations on which the item was not included into the top-K.420

Equation (10) formalizes the above reasoning, where ϑk(Fl) denotes the421

sum of the weights of those rankings on which item Fl was ranked at the422

kth position (1 ≤ k ≤ K), while ∼ ϑk(Fl) is the sum of the weights of those423

rankings on which the lth item was not included into the top-K. For the424

latter case divide the expression by M−K since these items have probability425

(M−K)/M to be placed at the last positions, assuming a uniform probability426

distribution.427
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ηkl =





ϑk(Fl)

(∑
i

ωi

)−1

, k ≤ K

∼ ϑk(Fl)

M −K

(∑
i

ωi

)−1

, k > K

(10)

It should be specified that the functions ϑk(Fl) and ∼ ϑk(Fl) must con-428

sider the fact that Xi belongs to the ranking population with weight ωi.429

Equation (11) show how to compute the function ϑk(Fl), but it may be eas-430

ily extended for ∼ ϑk(Fl). On the other hand, in Equation (10) the sum of431

all weights
∑

i ωi ≤ N is used to normalize the heuristic values.432

ϑk(Fl) =
∑

Xi∈X

{
ωi , Xk

i = Fl

0 , Xk
i 6= Fl

(11)

Example 1. Let us consider a weighted aggregation scenario of N = 5433

partial rankings over M = 5 items where each expert selected the K = 3 most434

relevant factors. Table 1 summarizes this scenario, where each row involves435

a partial ranking. According to Equation (10), the heuristic preference of436

accepting the item F2 at the second position is given by η22 = ϑ2(F2)/2.2 =437

0.8/2.2 ≈ 0.36. Similarly we can compute the remaining components of the438

heuristic matrix.439

Table 1: Example of a weighted aggregation of multiple top-K rankings.

ωi F1 F2 F3 F4 F5

X1 0.8 1 2 K + 1 3 K + 1
X2 0.2 2 1 K + 1 K + 1 3
X3 0.5 1 3 K + 1 K + 1 2
X4 0.1 1 3 K + 1 2 K + 1
X5 0.6 2 1 3 K + 1 K + 1

Observe that according to Equation (10) some heuristic values could be440

zero (e.g. η25 = 0 since F2 was always included into the top-3) and therefore441

the probability P v
kl of selecting these states will be zero. However, normally442

the probability value P v
kl should not be zero since it is possible to estimate a443

good solution having F2 at the last position. In order to overcome this issue444

we replace all zero-values by ηMIN = min {ηkl} such that ηkl 6= 0, thus we445

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

guarantee that all states have a probability to be visited by artificial ants,446

although they have less chance to be selected.447

5.2. Weighted aggregation of multiple top-Ki rankings448

This scenario is more complex (but also more informative) because each449

respondent is free to selectKi items such that 2 ≤ Ki ≤M . Since the number450

of relevant items could change from a respondent to another, we cannot451

simply count the number of observations of each item. In order to compute452

a more realistic heuristic matrix we may compute the relative frequency on453

which an item could be observed at each ranking position. Notice that this454

assumption attempts to hypothetically break the ties in order to transform455

partial rankings into complete ones. Equation (12) enunciates this method,456

where QKi
(Fl) is the set of all rankings where item Fl was excluded from457

the top-Ki, ψXi
(Fl) is the set of all feasible positions for the lth item, while458

ϑk(Fl) denotes the sum of the weights of those rankings on which item Fl459

was placed at the kth ranking position.460

ηkl =


ϑk(Fl) +

∑

Xi∈QKi
(Fl)

{
ωi , k ∈ ψXi

(Fl)

0 , k /∈ ψXi
(Fl)



(∑

i

ωi

)−1

(12)

Example 2. Let us consider the weighted aggregation scenario summa-461

rized in Table 2, with N = 5 partial rankings over M = 5 items where the462

ith respondent selected the most relevant Ki items. According to Equa-463

tion (12), the heuristic value of accepting F2 at the first position η12 is464

1/2.2(0.7) ≈ 0.318 since ϑ1(F2) = 0.7, QKi
(F2) = {X1, X4}, ψX1(F2) =465

{4, 5}, ψX4(F2) = 3, 4, 5. Observe that item F2 could not be hypothetically466

located at the first ranking position without introducing new tied pairs of467

items because k /∈ ψX1(F2)∪ ψX4(F2). This suggests that the heuristic value468

η12 is computed from the number of times F2 was observed at the first posi-469

tion.470

Similarly to the first scenario (i.e., respondents select the most relevant K471

items), we must avoid zero-values in the heuristic matrix, although this situa-472

tion is possible (i.e., the item was never observed in a position and there is no473

chance to be observed without inducing new ties). However, it is still possible474

to build a candidate solution with this feature having minimal distance to475

the consensus, and therefore it must be considered as well. In these scenarios476

the probability should not be zero but rather small, e.g., ηMIN = min{ηkl}477
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Table 2: Example of a weighted aggregation of multiple top-Ki rankings.

ωi F1 F2 F3 F4 F5

X1 0.8 1 K1 + 1 2 K1 + 1 3
X2 0.2 3 1 K2 + 1 2 K2 + 1
X3 0.5 2 1 4 5 3
X4 0.1 2 K4 + 1 K4 + 1 K4 + 1 1
X5 0.6 5 3 1 2 4

where ηkl 6= 0. This approach is similar to the thresholding strategy used in478

MAX-MIN Ant Systems [41] which proved to be quite effective in promoting479

the exploration of alternative regions of the search space. Next we propose480

two strategies to compute the weight of each partial ranking.481

6. Heuristics to determine the weight of each partial ranking482

A pivotal issue when solving the weighted aggregation problem is related483

to the estimation of weights. Strategies for weighting partial rankings could484

vary from expert-based estimations to more automated measures. In this485

paper we addressed this issue by considering two scenarios. In the first one,486

the weight is calculated from the fuzzy membership grade of each partial487

ranking to a set of predefined categories. If these predefined categories are488

not available (second scenario), then the weight is computed as the ratio of489

non-tied items included in the partial ranking. This latter heuristic is based490

on the fact that partial rankings having a fewer number of tied factors are491

more informative when solving the weighted aggregation problem, as they492

better express the user preferences. Note however that we are assuming that493

partial ranking instances have the same confidence level (i.e., all experts494

responses are equally reliable).495

Next we describe an algorithm to compute the membership degree of each496

partial top-K or top-Ki ranking across a set of predefined categories. In this497

paper, we assume that a category is a disjoint set of items that comprises an498

information granule regularly defined by domain experts. This fuzzy alloca-499

tion problem could be formalized as follows. Let us suppose a set of N partial500

rankings X = {X1, ..., Xi, ..., XN} over M items F = {F1, ..., Fl, ..., FM} and501

a set of categories C = {C1, ..., Cj, ..., CP} resulting from a partition of the502

item set. The fuzzy allocation problem is equivalent to compute the degree503

on which partial rankings belong to each predetermined category. This allo-504
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cation problem is fuzzy in nature because a partial ranking may be associated505

with several categories at the same time but with different degrees.506

Essentially, the proposed method computes the correspondence degree507

between items in the partial ranking and those items belonging to each cat-508

egory. Observe that we cannot compute this correspondence degree using a509

distance function (e.g., the Hausdorff distance) since categories are unordered510

sets and therefore there is no ordinal relation among category items. The511

method comprises four well-defined steps which are described below.512

Step 1. Compute the intersection set Φij = Xi ∩Cj between the partial513

ranking Xi and the category Cj. This step allows determining, for each514

partial ranking, the set of ranked items that additionally belongs to the jth515

category. Notice that this step does not consider the existence of an ordinal516

relation between pairs of items included into the top-K (or top-Ki).517

Step 2. Compute the relative relevance Z(Fl) of each factor Fl ∈ Φij518

using its position 1 ≤ R(Fl) ≤ K into the top-Ki (or top-K) items associated519

with the ith partial ranking. The relevance Zi(Fl) = [(Ki + 1) − R(Fl)]/Ki520

provides a local measure to determine the degree of membership to each521

category. In the case of top-K partial rankings, K1 = . . . = Ki = . . . = KN522

since all respondents have to select exactly K relevant items.523

Step 3. Compute the weight ω̃
(j)
i of the ith partial ranking to the jth524

category. To accomplish that, we adopt Equation (13) for both top-K and525

top-Ki scenario, assuming that ψ is the normalization factor.526

ω̃
(j)
i =

∑

Fl∈Φij

Z(Fl)

ψ
(13)

It should be remarked that, for top-K partial rankings, the number of527

relevant items K may be different from the cardinality of the category Cj. If528

|Cj| < K then the degree to which the ith partial ranking belongs to the jth529

category will never be maximal because some ranking positions cannot be530

covered. On the other hand, if |Cj| > K the degree to which the ith partial531

ranking belongs to the jth category will never be maximal either because532

some ranking items cannot be selected by respondents. Both scenarios are533

considered when normalizing the sum of all relevance degrees, which allows534

computing fair membership degrees.535

Therefore, for top-K partial rankings, ψ =
−min{K,|Cj |}[−2K+min {K,|Cj |}−1]

2K
.536

This normalization factor represents the sum of the first min {K, |Cj|} rele-537

vance degrees. Being more explicit, this sum of relevance degrees is equivalent538
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to computing the sum of the first K numbers i/K, i = {1, .., K} minus the539

sum of the K − min{K, |Cj|} numbers i/K, i = {1, .., K}. It implies that540

the maximal value for the sum of the relevance degrees Z(Fl),∀Fl ∈ Φij is541

reached when Cj ⊆ Xi and items contained in Cj are placed at the first K542

ranking positions. The normalization factor allows estimating realistic values543

and may be inferred from the following expression:544

(
K∑

i=1

i/K

)
−



K−min{K,|Cj |}∑

i=1

i/K




=
K + 1

2
− (K −min{K, |Cj|})(K −min{K, |Cj|}+ 1)

2K

=
−min{K, |Cj|}[−2K + min {K, |Cj|} − 1]

2K

In the case of top-Ki partial rankings, the number of relevant items will545

likely differ from one partial ranking to another. More importantly, some546

of these items may be placed at the same ranking position (i.e., tied items547

into the top-Ki are allowed). This feature increases the uncertainty in the548

decision-making process and may lead to quite similar membership degrees.549

If the relevant items are uniformly selected from homogenous categories,550

then all membership degrees will probably tend to the membership value551

1/|C|. This configuration cannot be observed in the previous scenario since552

we assumed that the top-K items are rigorously ordered.553

Another issue that arises here is that there is no restriction on the number554

of relevant items to be selected by the respondent when constructing the555

top-Ki partial ranking. This implies that a specific category can be entirely556

included into the top-Ki ranking. It could be possible to allocate all selected557

items at the same ranking level (e.g., selected items belong to the same558

category and they are equally relevant to characterize the concept under559

evaluation). In this case, the normalization factor ψ = |Cj|.560

Step 4. After computing the above equation for each category, the final561

membership values are calculated as ω
(j)
i = ω̃

(j)
i /

∑
j ω̃

(j)
i . This ensures that562

the sum of all membership values will be exactly one, which is an important563

property to be preserved in fuzzy environments.564
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7. Numerical simulations565

In this section, we evaluate the proposed weighted aggregation approach566

across several evolutionary approaches that proved to be adequate solvers567

of the Kemeny ranking problem. With this goal in mind, we used both568

real-world and synthetic datasets having different features.569

7.1. Benchmarking algorithms and parametric settings570

In this section, we describe the algorithms selected for benchmarking pur-571

poses. Recently Aledo et al. [15] proposed a solution scheme based on Evolu-572

tionary Computation for the Kemeny ranking problem. Results have shown573

that evolutionary algorithms clearly outperformed other tested algorithms574

(i.e., Borda counting index, variants of the Branch and Bound algorithm,575

among others). The central feature of the Genetic Algorithms (GA) used to576

solve the Kemeny ranking problem relies on the search space characteristics.577

Instead of dealing with the standard binary representation, they adopted a578

permutation-based solution encoding. During the search progress, the chro-579

mosome population evolves according to three genetic operators: selection,580

crossover and mutation. The selection operator promotes high-quality in-581

dividuals and does not depend on the solution representation, but on the582

fitness value.583

Nevertheless, in permutation-based search spaces crossover and mutation584

operators must be carefully defined; otherwise non-feasible solutions may be585

produced. In this study, we used the operators discussed in [44] to solve the586

Traveling Salesman Problem. Once promising individuals have been selected,587

they are (randomly) organized in pairs. Over each pair we apply the crossover588

operation by using one of the following three operators:589

• POS. Position-based crossover operator [45]. It starts by selecting a590

set of random positions such that the values for these positions are kept591

in both parents. The remaining positions are completed by using the592

relative order in the other parent.593

• OX1. Order crossover operator [46]. It selects two cut points 1 ≤594

c1 < c2 ≤ M and then, for every parent, the genetic segment between595

the cut points c1 and c2 is directly copied into the corresponding child.596

Then, starting from c2, the remaining items are copied into that child597

following the relative order in which they appear in the other parent,598

onwards and moving to the first position once the end of the individual599
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is reached. The same procedure is repeated in the other child, by600

exchanging the role between the parent and the child.601

• OX2. Order-based crossover operator [45]. It randomly selects several602

positions for each parent. Items in non-selected positions are main-603

tained in the child, while the selected ones are set according to the604

positions taken by these items in the other parent.605

Once offspring are generated by crossover, a mutation operator is applied606

over each offspring with a given mutation probability. In [13] the authors607

adopted the following evolutionary operators:608

• ISM. Insertion mutation operator [47]. It randomly chooses an element609

in the permutation, which is removed and reinserted in a different (ran-610

domly selected) position.611

• DM. Displacement mutation operator [48]. It randomly selects a seg-612

ment of items in the permutation, which are removed and reinserted in613

a randomly selected position.614

• IVM. Inversion mutation operator [49]. The semantic of this genetic615

operator is quite similar to DM but the removed items are reinserted616

as a single block in reverse order.617

The combinations of the above permutation-based crossover and muta-618

tion operators lead to nine GA-based optimizers. For such evolutionary ap-619

proaches, we used a population of 200 individuals. The mutation probability620

is set to 0.1 whereas the crossover probability was fixed to 0.9. Observe that621

the crossover probability is notably higher than the mutation probability as622

suggested in [15]. The search process stops after 50 generations, leading to623

10,000 evaluations of the objective function. Normally, the number of gen-624

erations used in population-based algorithms is higher than the number of625

individuals. However, after a number of preliminary simulations we observed626

that, for the same number of generations, the GA-based algorithms reported627

better results by using a larger population and fewer generations.628

In the case of ACO-based algorithms, we adopted the following param-629

eters: the number of ants was taken as the number of items to be ranked630

multiplied by S = 3; α = 2 and β = 3, the pheromone matrix was initialized631

to τkl(0) = 0.5 and the evaporation factor was set to ρ = 0.8. For the ACS632

algorithm, the parameter q0 was initialized to 0.6 whereas for MMAS the633
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pheromone thresholds τMIN and τMAX are computed as suggested in [41].634

Finally, the search stops once the algorithm reaches 9,000 objective func-635

tion evaluations. Notice that we reduced the number of evaluations allowed636

for ACO-based methods, since estimating the heuristic information requires637

further calculations.638

In the above parameter configuration, β > α since the heuristic matrix639

provides a suitable information source when aggregating partial rankings,640

which is based on the principle of greedy aggregation methods. On the641

other hand, the homogeneous initialization of the heuristic matrix allows642

guiding the search mainly based on the heuristic information at the first643

iterations. However, solely promoting the heuristic information may lead to644

stagnation or premature-convergence configurations. Aiming at preventing645

these undesirable states, we selected a large evaporation factor.646

Moreover, we include two simpler algorithms as baselines. The first one647

is the weighted Borda counting method[13], which computes a score for each648

item based on its position across all observations. Next, items are arranged649

according to their scores. The second baseline method, baptized as the650

Greedy Ant Model (GAM), relies on a single ant in ACS that systemati-651

cally only exploits the heuristic knowledge to select the next feasible state.652

In GAM, α = 0, β = 1 and q0 = 1. Overall, we compare our approach against653

two greedy methods as baseline techniques and nine evolutionary algorithms.654

7.2. Numerical simulations for a real-world dataset655

In this section, we evaluate the proposed methodology by using a real656

study case concerning to the attractiveness of companies in Belgium [50][34][27].657

During the data acquisition phase, 14585 Belgian respondents (aged between658

18 and 65 years old) were consulted regarding two different ranking scenar-659

ios. Both surveys were conducted by a panel of marketing experts from660

Randstad1 and are summarized as follows:661

• Scenario 1. Each respondent ranked the top-5 factors out of M = 17662

possible factors. From this survey we obtained 14,585 partial rankings663

where only the top-K factors are ordered, whereas the other M − K664

factors are tied at ranking position K + 1.665

1Randstad (http://www.randstad.com) is the second largest Human Resources (HR)
provider in the world. It expanded its operations to 39 countries, representing more than
90 percent of the global HR services market.
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• Scenario 2. In the second study each expert is free to select the most666

relevant Ki factors, such that 2 ≤ Ki ≤ M , therefore the number667

of ranked elements is not necessarily homogeneous in all cases. More668

explicitly, in the ith ranking the top-Ki factors are ordered, whereas the669

remaining M −Ki factors are ranked at the position Ki + 1. Moreover,670

in this kind of partial rankings, tied factors into the top-Ki ranked671

positions could be observed.672

Solving these ranking aggregation problem allows characterizing the at-673

tractiveness of companies in Belgium, that is, their ability to attract highly-674

competent and productive employees. If workers prefer some factors (e.g.675

comfort, salary) when they are looking for an employer, and the evaluated676

company does not offer such features, then it is expected that more compe-677

tent employees end up not working with that company. With this knowledge678

at hand, the company board may improve its branding and enhance its visi-679

bility which frequently results in better incomes. Table 3 displays the global680

factors (ranking items) evaluated by respondents that came up after a panel681

discussion of marketing experts.682

Table 3: Global factors evaluated by each respondent during the online survey.

F1 Financially sound
F2 Offers quality training
F3 Offers long-term job security
F4 Offers international / global career
F5 Future prospects / career opportunities
F6 Strong management
F7 Offers interesting jobs (job description)
F8 Pleasant working environment
F9 Competitive salary package
F10 Good balance between life and work
F11 Conveniently located
F12 Strong image / pursues strong values
F13 Quality products / services offered
F14 Deliberately handles the environment and society
F15 Uses the latest technologies / innovative
F16 Provides flexible working conditions
F17 Encourages diversity (age, gender, ethnicity)

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4 displays the list of expert-defined categories, which allows com-683

puting the weight of each partial ranking as explained in Section 6. Par-684

ticularly, we adopted the heuristic strategy for predefined categories where685

factors are gathered according to their semantics by marketing experts.686

Table 4: Categories determined by marketing experts.

Name Factors in the category
C1 Salary F9

C2 Stability F1, F3

C3 Future F2, F5, F4, F7

C4 Comfort F16, F11, F10, F8

C5 Status F17, F14, F15, F13, F12, F6

Figure 1 shows the average membership degree across all categories for687

both studies. The reader may observe that the maximal average member-688

ship degree corresponds to the category C2 in both scenarios. This result is689

certainly interesting but unsurprising because Belgian people regularly have690

well-paid jobs, and thus they are more focused on finding jobs with safer con-691

tract terms. Therefore, the membership degrees for the “Stability” category692

will be used to solve the weighted aggregation problem.693

Figure 1: Average memberships degrees across predefined categories: (a) top-K aggrega-
tion scenario, and (b) top-Ki aggregation scenario.

In the first scenario, the differences are more evident given the lower dis-694

persion in the selected factors (i.e., the respondents tend to include similar695

factors into the top-5). On the other hand, in the second scenario, the disper-696

sion increases since each respondent could select a large number of relevant697

factors. It should be highlighted that solving the weighted Kemeny ranking698
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problem for scenarios with high dispersion is undoubtedly more complicated699

due to the lack of consensus among respondents.700

Figure 2 shows the performance of the selected algorithms for the top-5701

aggregation scenario. The performance measure refers to normalized Haus-702

dorff dissimilarity between the aggregated ranking and the partial rankings.703

Due to the stochastic nature of evolutionary and swarm intelligence algo-704

rithms, each record is computed from the average of 10 independent trials.705

The reader may observe that all optimizers are capable of outperforming the706

baseline methods, while ACS stands as the best-performing algorithm fol-707

lowed by MMAS. Moreover, the results have shown suggest that OX2-ISM708

is the best-performing GA-based optimizer, being ranked third overall.709

Figure 2: Performance of selected algorithms for the top-5 aggregation scenario.

Figure 3 reports the relative improvement rate of swarm and evolutionary710

algorithms with regards to the two greedy methods under consideration. In711

this aggregation scenario, the ACS and MMAS algorithms exhibit the largest712

improvement rates.713

Figure 4 depicts the normalized Hausdorff dissimilarity measure for the714

top-Ki aggregation scenario. In this case, all ACO-based algorithms outper-715

form the other approaches and ACS emerges as the top contender. The evo-716

lutionary optimizers perform comparably among them, although algorithms717

using the OX1 crossover operator fare slightly worst. It should be high-718

lighted that the solutions computed by GAM are better than those produced719

by the weighted Borda counting method. However, this greedy approach is720

not competitive against evolutionary and swarm intelligence optimizers.721

Figure 5 illustrates the relative improvement rate of swarm and evolution-722

ary algorithms in comparison to the BORDA and GAM baseline methods.723

Observe that all optimizers are capable of outperforming the baseline meth-724
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Figure 3: Improvement rate attained by the algorithms under discussion with regards to
the two baseline methods for the top-K aggregation scenario.

Figure 4: Performance of the selected algorithms for the top-Ki aggregation scenario.

ods and that ACS achieves the largest improvement rates.725

The top-Ki datasets reveal a greater dispersion around the global (often726

unknown) consensus since there are fewer tied factors and finding the Kemeny727

ranking solution could be more challenging. Nevertheless, the inclusion of the728

membership degrees of each ranking to the dominant category will probably729

reduce the dispersion degree. This suggests that partial rankings with high730

membership degree to the C2 category will comprise similar relevant factors731

and therefore the search problem will likely be easier to solve.732

Overall, the results support the superiority of ACS and MMAS over the733

two greedy and nine evolutionary algorithms. The AS scheme is less com-734

petitive, which suggests that exploiting only the best solutions found by735

artificial ants could be convenient when aggregating partial rankings. In the736

next subsection, we evaluate our methodology using more generic datasets.737

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 5: Improvement rate attained by the benchmarking algorithms over the two baseline
methods for the top-Ki aggregation scenario.

7.3. Numerical simulations for synthetic datasets738

Aiming at generalizing the above results, we adopted 190 synthetic datasets739

from www.PrefLib.org having different complexity in both the number of740

instances and factors. These datasets comprise top-Ki partial rankings where741

ties are allowed. The number of instances ranges from 10 to 10,335 whereas742

the number of factors goes from 4 to 155. The reader may observe that such743

datasets do not include an explicit definition of categories. Therefore, in744

these synthetic aggregation problems, the weight of each partial ranking is745

calculated according to the ratio of non-tied items as explained in section 6.746

In order to verify the existence of significant differences among the suite747

of benchmarking algorithms, we computed the Friedman two-way analysis748

of variances by ranks [51]. The Friedman test is a multiple-comparisons749

nonparametric statistical test that detects whether at least two of the samples750

(in a set ofN > 2 samples) represent populations with different median values751

or not. In our case, the Friedman test suggests rejecting the null hypothesis752

H0 (p-value = 2.2825E-10 < 0.05) using a confidence interval of 95%. Thus,753

we can conclude that there are statistically significant differences between at754

least two algorithms across all datasets.755

Figure 6 portrays the mean ranks computed by the Friedman test. From756

such results, we can formalize some empirical conclusions about the perfor-757

mance of the methods under consideration:758

• The ACS algorithm is capable of notably outperforming the remaining759

search methods, followed by MMAS. However, the existence of statis-760

tically significant differences between them must be verified.761
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• The OX1 crossover operator leads to poor performance and may not762

be adequate for solving the extended Kemeny ranking problem. The763

other evolutionary optimizers perform comparably among them, with764

the OX2-ISM scheme producing better results.765

Figure 6: Mean ranks computed by the Friedman test for each algorithm across all syn-
thetic datasets.

To further confirm the superiority of the search methods over the greedy766

methods, Figure 7 displays the improvement rate attained by swarm and evo-767

lutionary algorithms over these two approaches. For these synthetic datasets,768

ACS displays the largest improvement rates, while AS and the evolutionary769

methods based on the OX1 crossover operator report the worst ones.770

Figure 7: Improvement rate attained by the algorithms under discussion with regards to
the two baseline methods for the synthetic datasets.

The last experiment is focused on determining whether the superiority of771

the ACS method is statistically significant or not. With this goal in mind, we772

use four post-hoc procedures (i.e., Bonferroni, Holm, Hochberg and Hommel)773
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[52] for multiple pairwise comparisons and a control method. These statis-774

tical procedures are required since in pairwise analysis, if we try to draw a775

conclusion involving more than one pairwise comparison, we will accumulate776

an error coming from its combination. Therefore, we are losing control on the777

Family-Wise Error Rate (FWER), defined as the probability of making one778

or more false discoveries among all the hypotheses when performing multiple779

pairwise tests [52]. Table 5 reports the unadjusted p-value and the adjusted780

p-values associated with each pairwise comparison using the best-performing781

algorithm (ACS) as the control method.782

Table 5: Post-hoc procedures for pairwise comparisons using ACS as the control algorithm.

Algorithm p-value Bonferroni Holm Hochberg Hommel
BORDA 1.8939E-56 2.4621E-55 2.4621E-55 2.4621E-55 2.4621E-55
GAM 2.0719E-49 2.6935E-48 2.4863E-48 2.4863E-48 2.4863E-48
OX1-IVM 1.8769E-46 2.4399E-45 2.0645E-45 2.0645E-45 2.0645E-45
OX1-DM 3.0934E-45 4.0214E-44 3.0934E-44 3.0934E-44 3.0934E-44
OX1-ISM 4.9068E-41 6.3789E-40 4.4161E-40 4.4161E-40 4.4161E-40
AS 2.0687E-25 2.6893E-24 1.6550E-24 1.6550E-24 1.6550E-24
POS-IVM 2.5414E-11 3.3038E-10 1.7789E-10 1.7789E-10 1.7789E-10
OX2-IVM 1.2108E-10 1.5741E-9 7.2652E-10 7.2652E-10 7.2652E-10
OX2-DM 2.8047E-10 3.6461E-9 1.4023E-9 1.4023E-9 1.4023E-9
POS-DM 1.1409E-8 1.4831E-7 4.5636E-8 3.9519E-8 3.4227E-8
POS-ISM 1.3173E-8 1.7125E-7 4.5636E-8 3.9519E-8 3.9519E-8
OX2-ISM 2.2062E-5 2.8681E-4 4.4125E-5 4.4125E-5 4.4125E-5
MMAS 0.0055 0.0725 0.0055 0.0055 0.0055

All post-hoc procedures reject the null hypothesis for a 5% significance783

level (corresponding to the 95% confidence interval). Only the Bonferroni784

procedure accepts the conservative hypothesis for the ACS-MMAS pair. This785

allows claiming the statistical superiority of the ACS optimizer when tested786

with the synthetic datasets used for simulations. From these results we can787

state that the strong elitism embedded into ACS/MMAS is a determinant788

aspect when aggregating weighted partial rankings.789

8. Concluding remarks790

In this paper we addressed the weighted aggregation of top-K and top-791

Ki partial rankings by extending the Kemeny ranking problem. To do that,792
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we proposed a search method rooted on Ant Colony Optimization that au-793

tomatically estimates the heuristic information from the rank population.794

Moreover, we discussed two strategies to compute the weight of each partial795

ranking. In the first case, the weight is computed from the fuzzy mem-796

bership degree of the target instance to a set of predefined categories (i.e.,797

information granules resulting from a partition of the whole item set). If such798

categories are not available, then the weight is calculated as the ratio of non-799

tied items. This heuristic assumes that partial rankings having fewer number800

of tied factors are more informative when aggregating partial rankings. The801

reader may observe that other alternatives to determine the weights could802

be explored.803

During the simulations, we compared the performance of our approach804

against two (greedy) baseline methods and nine genetic-algorithm-based im-805

plementations in presence of both a real-world problem and 190 synthetic806

datasets. The results have shown that the ACS algorithm is capable of sig-807

nificantly outperforming the remaining techniques, followed by the MMAS808

algorithm. This finding could be ascribed to the elitist approach of ACS809

and MMAS in conjunction with the proposed strategy for estimating the810

heuristic information. Moreover, we observed that the OX1 crossover opera-811

tor reports poor performance; therefore, it may not be suitable to solve the812

Kemeny ranking problem. As a future work, we will focus on extending the813

proposed approach to more generic aggregation scenarios.814
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[50] Z. Dikopoulou, G. Nápoles, E. Papageorgiou, K. Vanhoof, Multi crite-947

ria methods used for assessing companies’ attractiveness, in: Multiple948

Criteria Decision Making (MCDM 2015), International Conference on,949

2015.950

[51] M. Friedman, The use of ranks to avoid the assumption of normality951

implicit in the analysis of variance, Journal of the American Statistical952

Association 32 (200) (1937) 675–701.953
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