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ABSTRACT 

The methods for geochemical anomaly detection are commonly based on statistical 

models that require assumption of the sample population to satisfy a particular 

distribution. In practice, the assumption of a particular distribution may degrade the 

performance of geochemical anomaly detection. In this paper, an ant colony algorithm 

is used to detect geochemical anomalies. The new method does not require 

assumption that the geochemical data satisfy a particular distribution. Applying this 

method to detect geochemical anomalies, we only need to put a number of “virtual 

ants” randomly into a geochemical grid map and let each ant complete its iterative 

search process. When the algorithm gets converged, the ants tend to aggregate in the 

geochemical anomalous regions where geochemical element concentration values are 

significantly greater than surrounding background. The number of times each grid 

point is visited by ants can be recorded in ant density data for geochemical anomaly 

identification. The ant density data are almost not affected by regional variations of 

geochemical background, thus they are suitable for identifying geochemical 

anomalies using a threshold method. As an illustration, the ant colony algorithm is 
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applied to detect geochemical anomalies in interpolated concentration data of Au, Ag, 

Cu, Pb, and Zn in the Altay district in northern Xinjiang in China. The results show 

that the ant colony algorithm can properly identify geochemical anomalies. 

Anomalies detected by the ant colony algorithm occupy 9.5% of the study area and 

contain 36% of the known mineral deposits; and anomalies identified using the 

Youden index method occupy 16.4% of the study area and contain 56% of the known 

mineral deposits. Therefore, the ant colony algorithm can serve as a feasible swarm 

intelligence paradigm for geochemical anomaly detection. 

Keywords: Ant colony algorithm; Swarm intelligence; Heuristic search; The Youden 

index; Geochemical anomaly detection 

1. Introduction 

Swarm intelligence has become a new artificial intelligence field inspired by insect 

swarms that display intelligence on the swarm level with very simple interacting 

individuals (Zhuang, 2004). In many aspects, the self-organization of insects into a 

swarm are similar to the self-organization of neurons into brain-like structures. These 

features could lead to important developments in pattern recognition systems, where 

perceptive capabilities can emerge and evolve from the interaction of many simple 

local rules. The emergence of a collective behavior pattern is largely controlled by 

competition among all possible behavior patterns, in which the pattern most fitting for 

the environment will prevail. 

The ant colony algorithm (Dorigo, 1992) is one of the swarm intelligent models. It 

is a parallel computational paradigm that allows exploitation of positive feedback as a 
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search mechanism. The collective behavior that emerges reinforces itself, where the 

more ants follow a trail, the more attractive that trail becomes for being followed. 

This heuristic was first applied to the travelling salesman problem (Dorigo, 1992; 

Dorigo and Gambardella, 1997) and then extended to other optimization problems such 

as quadratic assignment (Maniezzo et al., 1994; Stutzle and Hoos, 1998; Liu, 2007), 

vehicle routing (Bullnheimer et al., 1997; Gambardella et al., 1999), and graph 

coloring (Costa and Hertz, 1997). Over the past 10 years, the ant colony algorithm 

was extended to deal with digital image habitats, in which virtual ants were able to 

react to their environment and perceive it. The evolution of pheromone fields suggest 

that artificial ant colonies could react and adapt to any type of digital habitat. Since 

then several studies have been conducted to apply this recent paradigm to real case 

problems with successful results (Ramos and Almeida, 2000). 

  Geochemical grid maps and digital images have similar features, thus some digital 

image processing methods are also suitable for processing a geochemical grid map. 

Inspired by image feature extraction based on the ant colony algorithm, we used the 

ant colony algorithm to detect geochemical anomalies in a map of interpolated 

element concentration data. This new approach is quite different from the commonly 

used geochemical anomaly detection methods. Many of the commonly-used methods 

are based on statistical models that analyze geochemical data with assumption of a 

particular distribution; for example, the mean ± 2σ method (Galuszka, 2007; Hawkes 

and Webb, 1962) and univariate analysis (Govett et al., 1975; Singer and Kouda, 2001) 

are used to handle data that exhibit a Gaussian distribution, multivariate data analysis 
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(Cheng et al., 1996; Garrett, 1989; Miesch, 1981; Stanley, 1988; Stanley and Sinclair, 

1989; Geranian et al., 2015) deal with data with multivariate Gaussian distribution, 

and fractal and multifractal methods (Cheng, 1995, 2000, 2006, 2007, 2008; Cheng 

and Agterberg, 1995; Cheng et al., 1994, 2000; Deng et al., 2010; Li and Cheng, 2004; 

Zuo et al., 2009; He et al., 2013; Luz et al., 2014) cope with data that follow a power 

law distribution. 

Chen et al. (2014) developed a multivariate geochemical anomaly identification 

method based on a restricted Boltzmann machine and got successful results. The 

method can identify multivariate geochemical anomalies from data with an unknown 

distribution. However, it is unsuitable for detecting univariate geochemical anomalies. 

As alternative, this paper provides an ant colony algorithm for identifying univariate 

geochemical anomalies from interpolated element concentration data with unknown 

distribution. It is a local heuristic search paradigm with the following characteristics: 

(a) it is versatile, in that it can be applied to similar versions of the same problem; (b) 

it is robust, i.e., it can be applied with only minimal changes to other problems; and (c) 

it is a population based approach. The last property allows exploitation of positive 

feedback as a search mechanism. It also makes the algorithm amenable to parallel 

implementations. This method uses an iterative search process to transform 

geochemical element concentration data into corresponding ant density data, from 

which geochemical anomalies can be identified using a threshold method. The 

iterative search process is completed through a set of parallel-executed local heuristic 

search steps that are not significantly influenced by regional variations of 
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geochemical background. Thus, this method can separate geochemical anomalies 

from a regionally-variable geochemical background. 

For demonstration purposes, the ant colony algorithm is applied to detect 

geochemical anomalies from interpolated concentration data of Au, Ag, Cu, Pb, and 

Zn in the Altay district in northern Xinjiang in China. This paper therefore seeks to 

present the application of the ant colony algorithm in geochemical anomaly detection. 

We compare the performance of the ant colony algorithm with that of the Youden 

index as applied to geochemical anomaly detection. 

2. Overview on the ant colony algorithm 

The ant colony algorithm proposed by Dorigo (1992) aims to search for an optimal 

path in a graph, based on the behavior of ants seeking a path between their colony and 

a source of food. In the natural world, ants initially wander randomly, and upon 

finding food return to their colony while laying down pheromone trails. If other ants 

find such a path, they are likely to follow the trail, returning and reinforcing it if they 

eventually find food. Over time, however, the pheromone trail starts to evaporate. The 

more time it takes for an ant to travel down the path and back again, the more time the 

pheromones have to evaporate. A short path, by comparison, gets marched over more 

frequently, and thus the pheromone density becomes higher on shorter paths than on 

longer ones. If there were no evaporation at all, the paths chosen by the first ants 

would tend to be excessively attractive to the following ones. In that case, exploration 

of the solution space would be constrained. Thus, when one ant finds a good (i.e., 

short) path from the colony to a food source, other ants are more likely to follow that 
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path, and positive feedback eventually leads to all the ants following a single path. 

The idea of the ant colony algorithm is to mimic this behavior with "virtual ants" 

walking around the graph representing the problem to solve. 

In the ant colony algorithm, an ant is a simple computational agent that iteratively 

constructs a solution for the problem at hand. The intermediate solutions are called 

solution states. At each iteration, an ant moves from state si to adjacent state sj, 

corresponding to a more complete intermediate solution. Thus, each ant k computes 

set Ak of feasible expansions to its current state in each iteration, and moves to one of 

these in probability. For ant k at iteration t, the probability of moving from state si to 

adjacent state sj depends on the combination of two values, i.e., the attractiveness 

       of the move, as computed by some heuristic indicating the priori desirability of 

that move and the pheromone trail ηij of the move, indicating how proficient it has 

been in the past to make that particular move. In general, ant k moves from state si to 

adjacent state sj with the following probability (Dorrigo et al., 1999)  

        
        

       
 

         
       

 
     

              

                                           

         (1) 

where α and β are positive constants used to express the importance of        and ηij, 

respectively, in the above probability computation. 

At each iteration t, pheromone trails are updated usually when all ants have 

completed their solution, increasing or decreasing the pheromone trails corresponding 

to moves that were part of "good" or "bad" solutions, respectively. The pheromone 

trail on the path from state si to adjacent sate sj is updated as (Dorigo et al., 1999) 

                                               (2) 
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where        and          are the pheromone trail on the path from state si to 

adjacent sate sj before and after the update, respectively; ρ is the pheromone 

evaporation coefficient expressed by a constant within interval (0, 1); and         is 

the following pheromone trail updated by all the ants (Dorigo et al., 1999) 

              
     

                                 (3) 

where m is the number of ants; and     
     is the following pheromone trail updated 

by ant k (Dorigo et al., 1999) 

    
      

                                             

                                                                  
      (4) 

where l/Lk is the reciprocal of the path length experienced by ant k. Therefore, the 

shorter the path is, the larger value the pheromone trail is enhanced. 

Before starting the ant colony algorithm, the following parameters need to be 

initialized: (a) the set of starting states; (b) the set of goal states; (c) the number of 

ants; (d) the termination condition of iterations for each ant; and (e) the definition of 

path length, i.e., the cost of the solution. 

3. Geochemical anomaly detection using ant colony algorithm 

3.1 Theory 

The ant colony algorithm can be used to extract image features (Ramos and 

Almeida, 2000; Zhuang, 2004). A grid element map, in which element concentration 

values are recorded by interpolation in regularly spaced grid points, is similar to a 

digital image. A grid element map can be viewed as a two-dimensional discrete space 

comprised of regularly spaced grid points that correspond to pixels in a digital image. 

Detecting geochemical anomalies in a grid element map is similar to extracting image 
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features from a digital image. Thus, the ant colony algorithm for image feature 

extraction can be modified to detect geochemical anomalies in a grid element map. 

The Golden Software Surfer can be used to generate grid element data by 

interpolating element concentration values at regularly-spaced grid points based on 

element concentration data collected from irregularly scattered samples. The grid 

element data are usually stored in a GRID file, which can be processed as a digital 

image, in which the ant colony algorithm can be used to detect geochemical 

anomalies. 

Detecting geochemical anomalies in a grid element map aims to identify subareas 

comprised of grid points at which the element concentration values are significantly 

greater than the surrounding background. Suppose that a virtual ant colony resides in 

a grid element map where each ant initially occupies randomly one grid point. Then, 

the anomalous grid points in the map are the goal points which all the ants search for 

heuristically among the adjacent grid points starting from their randomly occupied 

grid points. This process is similar to utilizing a virtual ant colony to react and adapt 

accordingly to different digital image habitats. The successful results of digital image 

feature extraction using the ant colony algorithm (Zhuang, 2004) provide a useful 

reference for developing it into a geochemical anomaly detect method. 

The ant colony algorithm for detecting geochemical anomalies in a grid element 

map can be designed as an iterative heuristic search process from the grid points 

occupied initially by ants to the anomalous grid points. At each iteration, all the ants 

in a colony simultaneously move one step from the current grid points to the adjacent 
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grid points and each ant tends to choose the neighboring grid point with the highest 

favorability. The favorability of a neighboring grid point is determined by both the 

pheromone trail intensity on the path from the current grid point to the neighboring 

grid point and the interpolated element concentration value of the neighboring grid 

point. 

After each iteration, the pheromone trail intensity on the path from each grid point 

to its each neighbor is updated in order to record the accumulated experience of the 

ant colony during the iterative search process. The modified quantity of the 

pheromone trail intensity is determined by both the difference between the element 

concentration values of two adjacent grid points and the number of the ants that have 

experienced the path between two grid points in the current iteration. 

In order to avoid visiting one grid point repeatedly during the iterative search 

process, each ant is required to memorize the grid points it has visited recently. The 

data-structure used for recording these visited grid points is called Taboo List. The 

length of Taboo List is determined upon the practical situation. In edge detection of a 

digital image, if several tiny edges exists in a digital image, the length of Taboo List is 

defined short so that those tiny edges can be detected properly. Similarly, the length 

of Taboo List should be defined short if small geochemical anomalies are expected to 

be properly identified in a grid element map. A small geochemical anomaly usually 

consists of only a few of anomalous grid points. In our case study, a geochemical 

anomaly is regarded as small one if it is comprised of less than four anomalous grid 

points. 
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The pheromone trail intensity on a path is required to decrease automatically over 

time. This mandatory rule can make the pheromone trail intensity on the path 

maintain at a reasonable level during the iterative search process to prevent it from 

converging too quickly on a sub-optimal region. In image feature extraction, a 

pheromone evaporation coefficient within (0, 1) is empirically determined to describe 

the decreasing speed of pheromone trail intensity on a path. The same way can be 

used in geochemical anomaly detection. 

After the algorithm gets converged, all the ants in the colony become stationary 

during iteration and tend to gather in geochemical anomalies in the grid element map. 

In this case, whether a grid point belongs to a geochemical anomaly can be 

determined as follows: a grid point belongs to an anomaly if the number of times it 

has been visited by ants is more than an empirically determined threshold value. The 

thing to stress here is that the number of iterations must be large enough (e.g., more 

than 3000) so that the ant colony algorithm can get completely converged. 

3.2 Algorithm for geochemical anomaly detection 

The ant colony algorithm for geochemical anomaly detection in a grid element map 

comprises: (a) initialization; (b) stepwise heuristic search; (c) pheromone trail update; 

and (d) geochemical anomaly identification. 

During initialization, m ants are randomly put into the grid element map and the 

pheromone trail on the path from each grid point to its each neighbor is initialized as 

the same small positive constant value. In image feature extraction, the allowed 

maximum number of ants put into an image is equal to the number of pixels in the 
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image and the optimal number of ants is usually chosen approximately equal to the 

square root of the number of pixels in the image (Zhuang, 2004). Similarly in 

geochemical anomaly detection, if the grid element map is M × N in size and m ants 

are put into it, then m must satisfy m  M × N. 

In order to find the optimal number of ants for the algorithm initialization in 

geochemical anomaly detection, 10, 20, 123, 500, and 1000 ants were tested to 

initialize the ant colony algorithm in Au anomaly detection in our case study. The 

arithmetic average of the Au concentration values collected from the grid points 

occupied by ants in each iteration should become larger and larger and eventually tend 

to a stable value after the algorithm gets converged. This average value is called 

average Au concentration value for monitoring the iterative search process in our case 

study. The diagrams of average Au concentration value varying with iterations for the 

five different number of ants are shown in Fig. 1. These diagrams show that the 

iterative search process converges to (a) around value 10 given m ≥ 500, (b) a value 

between 9 and 11 given m  20, and (c) a value more than 12 given       

        . Here, 151 × 100 is the size of geochemical grid element map in our case 

study. When the iterative search process has been completed, the bigger the converged 

value is, the more number of ants gather in anomalous areas. Therefore, using 

different number of ants to initialize the ant colony algorithm affects its Au anomaly 

detection performance. The optimal number of ants for the algorithm initialization is 

approximately equal to     . This is the same as the conclusion in image feature 

extraction. 
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In the stepwise heuristic search, Taboo List TLk of ant k records the grid points that 

ant k has visited recently. The TLk is used to define, for ant k, the set of neighboring 

grid points that ant k is located at grid point i still has to visit. By exploiting TLk, ant k 

can build feasible solutions, that is, it can avoid to visit a grid point twice. 

To investigate how a given length of Taboo List impacts the algorithm performance 

in geochemical anomaly detection, we used seven different lengths of Taboo List. 

These Taboo Lists can record respectively 10, 20, 30, 40, 50, 60, and 70 grid points 

that have been visited recently by an ant during the iterative search process. Fig. 2 

shows that the average Au concentration value varies with iterations when different 

lengths of Taboo List are used in the ant colony algorithm. These diagrams reveal that 

the iterative search process converges to (a) a higher value after more than 1000 

iterations using length of Taboo List less than 30, (b) a lower value after less than 500 

iterations using length of Taboo List more than 50, and (c) a moderate value (which is 

the same as the converged value given m = 123) after 800 to 1000 iterations using 

length of Taboo List between 30 and 50. Therefore, the longer the length of Taboo 

List is, the faster the iterative search process gets converged and the lower value it 

converges to. The optimal length of Taboo List should be between 30 and 50 in Au 

anomaly detection. A shorter Taboo List can make the iterative search process 

converge to a higher value, which results in all the ants tending to gather around 

anomaly centers and small anomalies after the algorithm gets converged. If one wants 

to locate anomaly centers or detect small anomalies in geochemical exploration, the 

length of Taboo List should be less than 30. However, using a Taboo List of length 
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more than 50 is always not suggested for Au anomaly detection. 

In a grid element map, weak fluctuation of interpolated element concentration 

values among neighboring grid points may be a random variation. When an ant at 

current grid point chooses a neighboring grid point to move to, such random variation 

must be ignored when judging the result. In our research, a fluctuation limitation was 

defined for filtering random variations between any two neighboring grid points. If 

the maximum difference of element concentration values between a current grid point 

and its neighbors is less than the fluctuation limitation, the fluctuation in element 

concentration value is regarded as random variation. In this case, an ant at a current 

grid point will randomly choose a neighboring grid point to move to. 

How the fluctuation limitation affects the performance of the ant colony algorithm 

in geochemical anomaly detection has been investigated in our case study. Fig. 3 

shows that the average Au concentration value varies with iterations when different 

fluctuation limitations are used in the iterative search process. This figure illustrates 

that the iterative search process converges to a value (a) more than 12 (which is the 

same as the converged value given m = 123) after more than 1000 iterations using 

fluctuation limitation of 0.001 and (b) less than 11 after less than 1000 iterations using 

fluctuation limitations of 0.0, 0.01, or 0.1. Therefore, the optimal fluctuation 

limitation is 0.001 for Au anomaly detection in our case study. A larger (i.e., 0.1) or a 

smaller (i.e., 0.0) fluctuation limitation may make the process quickly converge to a 

lower value. In other words, either a lower or a higher fluctuation limitation may 

degrade the performance of the ant colony algorithm in Au anomaly detection. 
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For computation simplicity, the probability from grid point i to its neighboring grid 

point j for ant k at step t is replaced by the favorability which is based on functional 

composition of pheromone trail and local heuristic value: 

   
             

 
          

                           (5) 

where        is the pheromone trail intensity on the path from grid point i to its 

neighbor j;        is the local heuristic value expressed by the geochemical element 

concentration value at grid point j; A is the set of eight neighbors of grid point i; TLk is 

ant k’s Taboo List; and α and β are two parameters that control the relative weight of 

pheromone trail        and local heuristic value       . The favorability is 

non-regularized probability. Its function is the same as the corresponding probability 

and it can be easily computed in the iterative search process. 

The roles of the parameters α and β are the following. If α = 0, the grid points with 

highest value are more likely to be selected; this corresponds to a classical stochastic 

greedy algorithm (with multiple starting points since ants are initially randomly 

distributed on the grid points). If β = 0, only pheromone amplification is at work; this 

method leads to rapid convergence of a stagnation, that is, a situation in which all ants 

make the same tour that, in general, is strongly sub-optimal (Dorigo et al., 1996). An 

appropriate trade-off has to be set between pheromone trail intensity and heuristic 

value. In geochemical anomaly detection, we suggest that α and β should be almost 

same numbers. 

At iteration t (t = 1, 2, …, tmax), ant k (k = 1, 2, …, m) completes its one-step local 

heuristic search and deposits the following quantity of pheromone on the path from 
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grid point i to its neighbor j: 

    
      

                                                            

                                                                                                       
   (6) 

where vi and vj are element concentration values at grid points i and j, respectively; c 

is the regularization constant. In our research, c is defined as 10 times the maximum 

value of element concentration data. 

The pheromone evaporation is considered in the update of pheromone trail to avoid 

occurring too high pheromone trails that may degrade the performance of the heuristic 

search process. The pheromone trail on the path from grid point i to its neighbor j is 

updated as follows: 

                           
                            (7) 

where        and          are the pheromone trails on the path before and after 

the update, respectively; ρ is the pheromone evaporation coefficient expressed by a 

constant within interval (0, 1); m is the number of ants randomly put into the grid 

element map; and     
     can be computed using Eq. (6). 

  Whether different ρ-values affect the performance of the iterative searching process 

in geochemical anomaly detection is investigated in our research. Five different 

ρ-values are used for the pheromone trail update in Au anomaly detection in our case 

study. Fig. 4 shows that the average Au concentration value varies with iterations for 

ρ = 0.01, 0.05, 0.08, 0.1, and 0.5. This figure reveals that the iterative search process 

converges to a value (a) more than 12 given 0.05  ρ  0.08 and (b) less than 11 given 

ρ < 0.05 or ρ > 0.08. Therefore, different ρ-values can affect the performance of the 

ant colony algorithm in Au anomaly detection. The optimal ρ-value for the algorithm 
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is between 0.05 and 0.08 in Au anomaly detection. 

The algorithm is stopped when all the ants become stationary or the maximum 

number of iterations has been completed. Then a user-defined threshold can be used 

to identify simulated geochemical anomalies from the ant density data that are the 

number of times each grid point has been visited by ants. A grid point belongs to an 

element concentration anomaly if the number of times it has been visited by ants is 

more than a predefined threshold value. 

  It should be pointed out that if the ant colony algorithm is executed more than once 

and the same set of parameters is used to initialize the algorithm, different 

geochemical anomaly detection results may be obtained due to the randomness of the 

initial positions of m ants. In order to reduce the impact of the randomness of the 

initialized positions of m ants, the results obtained from different executions can be 

synthesized into a comprehensive one by averaging the ant density data derived from 

different executions, and geochemical anomalies can be identified from the 

comprehensive ant density data using a threshold method. The Python pseudo-code 

for geochemical anomaly detection based on the ant colony algorithm is listed in 

Table 1. 

4. Case Study 

The Altay district in northern Xinjiang in China is chosen as a study area. Data of 

Au, Ag, Cu, Pb, and Zn concentration values collected from irregularly distributed 

stream sediment samples were transformed into concentration values at regularly 

spaced grid points by interpolating with the Golden Software Surfer and saved in five 
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GRID files. The ant colony algorithm was used to detect anomalous Au, Ag, Cu, Pb, 

and Zn concentration values in each of the five GRID files. 

4.1 Geological setting and mineral deposits 

The Altay orogenic belt is the amalgamated part of the Siberia plate and the 

Kazakhstan-Junggar plate (Li, 1996; Li and Zhao, 2002). The collision and 

amalgamation of the Siberia, Khazakstan, and Junggar blocks during Devonian and 

Early Carboniferous periods resulted in the evolution of geotectonic environment that 

provided permissive conditions for Au, Ag, Cu, Pb, and Zn mineralizations (Zeng et al, 

2005). The widely distributed intermediate-acid intrusive rocks and Devonian marine 

volcanic-sedimentary rocks are genetically related to Au, Ag, Cu, Pb, and Zn 

mineralizations and the lower−middle marine volcaniclastic-sedimentary sequence of 

the Devonian Ashele Formation are the primary ore-host strata (Ye et al., 1996; Zhang 

et al., 2014). The Ashele Cu-Zn deposit, Duolanasayi Au deposit, and other dozens of 

mineral deposits have been discovered in the study area (Fig. 5). The polymetallic 

mineralization in the study area was closely related to the Altay orogenic process (Li, 

1996; Li and Zhao, 2002). The Ashele Cu-Zn deposit was formed in Ashele 

volcanic-sedimentary basin in the foreland during the orogenic intermittent 

extensional period. U-Pb dating of zircons reveals that the mineralization in the 

sedimentary exhalative period occurred in the late Early Devonian (388 - 387 Ma) and 

the magmatic hydrothermal mineralization took place in the Middle Devonian (379.4 

± 0.8 Ma) (Yang et al, 2013). The Duolanasayi, Saidu, and Axile Au deposits were 

formed in the southern margin of the Altay orogenic belt during the main orogenic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

18 
 

period. The mineralization style, mineral assemblage, and ore-forming fluid are 

similar to those of epizonal orogenic Au deposits defined by Groves et a1. (1998). 

Isotopic ages of the Au deposits are clustered in the range of 310 - 270 Ma, 

corresponding to Late Carboniferous to Early Permian (Yan et al., 2006). 

The known mineral deposits in the study area belong to the same metallogenic 

series (Wang and Chen, 2001) controlled regionally by the orogenic structures, the 

volcaniclastic-sedimentary sequence of the Devonian Ashele Formation, and the 

intermediate-acid intrusive rocks. According to our statistics, 96% of the known 

mineral deposits in the study area occur in the Devonian Ashele Formation. In this 

case study, the known mineral deposits serve as the binary target variable for 

validation of the geochemical anomaly detection. 

4.2 Geochemical exploration data 

  A geochemical stream sediment survey has been conducted in the study area. A 

total of 1623 stream sediment samples were collected along the drainage systems in 

the study area (Fig. 6), which is located in an arid region where there are no stream 

flows within most drainage basins. This posed difficulty in sampling stream sediments 

in the study area. In order to ensure the sampling density of the geochemical survey, 

sediment samples were collected at a site no matter whether the stream is active or not 

(i.e., dry). As a result, some samples are located close the boundaries of drainage 

catchments (Fig. 6). Concentrations of Au, Ag, Cu, Pb, and Zn in each sample were 

measured in different units: parts per billion (ppb) for Au; and parts per million (ppm) 

for the other elements. Using the element concentration data of the irregular 
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distributed stream sediment samples, regularly spaced grid element concentration 

values were generated by interpolation with inverse distance to a power using the 

Golden Software Surfer. In data interpolation, a power value should usually fall 

between one and three. Accordingly, a power value of 2 was used in our case study. 

The grid point spacing is 0.2539 km in east-west direction and 0.2536 km in 

north-south direction. There are 100  151 grid points in all and 5518 grid points are 

located within the blank area which is covered by Gobi desert. Fig. 7 shows the 

contour maps of grid element concentration values on which the known mineral 

deposits are superimposed. 

4.3 Metallogenic indicator assessment 

  Receiver operating characteristic (ROC) curve (Zou et al., 2007) and area under the 

curve (AUC) (Flach et al., 2011; Chen, 2014) are widely used classification 

performance measures in machine learning. For a binary classification system, the 

steeper an ROC curve is toward the upper left corner in the ROC space, the better the 

binary classification system performs. A perfect classification corresponds to the 

upper left corner of the ROC space. The AUC value is an overall performance 

measure, which integrates the performance measure of an ROC curve into one metric. 

The AUC value is between 0.5 and 1; an AUC value of 0.5 means the classification is 

equivalent to a random guess while an AUC value of 1 means the classification is 

perfect. On the basis of AUC value, statistics ZAUC can be computed (Chen, 2014). 

ZAUC satisfies standard normal distribution. It can be used to test at -level ( = 0.01, 

0.05, or 0.1) to determine if an AUC value is significantly different from 0.5 (Chen, 
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2014). 

In geochemical exploration, anomalous concentration values of each geochemical 

indicator element must be spatially associated with the known (discovered) mineral 

deposits (the undiscovered mineral deposits are ignored). In other words, indicator 

element concentration values at regularly-spaced grid points can be used to 

differentiate between deposit-bearing and non-deposit-bearing grid points. In our case 

study, deposit-bearing and non-deposit-bearing grid points are defined as follows: a 

deposit-bearing grid point is located near a known mineral deposit (the distance 

between a deposit-bearing grid point and a mineral deposit is less than 0.1794 km) 

while a non-deposit-bearing one is located more than 0.1794 km from any known 

mineral deposit. The critical distance of 0.1794 km is computed using the following 

function of the grid point spacing in both east-west and north-south directions: 

   
      

 
    

      

 
          (km). 

It should be stressed that there are geochemical anomalies located near 

undiscovered mineral deposits in a study area and these anomalies are exactly what 

geochemical exploration is seeking. In metallogenic indicator assessment, the 

undiscovered mineral deposits are ignored when defining deposit-bearing and 

non-deposit-bearing grid points. As the result, grid points near the undiscovered 

mineral deposits (i.e., deposit-bearing grid points) are incorrectly defined as 

non-deposit-bearing ones. However, these incorrectly defined non-deposit-bearing 

grid points usually account for a very small proportion of total non-deposit-bearing 

grid points. Thus, the ROC curve and AUC value for an indicator element does not 
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significantly affected by ignoring the undiscovered mineral deposits. 

In order to test whether Au, Ag, Cu, Pb, and Zn can serve as geochemical indicator 

elements in our case study, the continuous distribution of threshold values is 

discretized by dividing the difference between the maximum and minimum into a 

number of equal intervals, which are progressively cumulated. Each of the discretized 

thresholds was used to discriminate between deposit-bearing and non-deposit-bearing 

grid points. Grid points with element concentration values more than the threshold are 

predicted as deposit-bearing while grid points with element concentration values less 

than the threshold are predicted as non-deposit-bearing. A binary classification system 

can be established with respect to all the discretized thresholds, and then the 

corresponding ROC curve and the AUC value can be obtained based on the predicted 

deposit-bearing and non-deposit-bearing grid points. The ROC curves for Au, Ag, Cu, 

Pb, and Zn are shown in Fig. 8. The estimated AUCs and their standard deviations as 

well as statistics ZAUCs for Au, Ag, Cu, Pb, and Zn are listed in Table 2. 

Fig. 8 indicates that concentration values of Au, Ag, Cu, Pb, and Zn can 

differentiate between deposit-bearing and non-deposit-bearing grid points. Table 2 

shows that the estimated AUC values of Au, Ag, Cu, Pb, and Zn are significantly 

different from 0.5 at level α = 0.1. Therefore, Au, Ag, Cu, Pb, and Zn can serve as 

geochemical indicator elements in our case study. 

4.4 Ant density data generation 

  The ant colony algorithm is an iterative search process whereby all the ants in a 

colony move simultaneously toward adjacent grid points in a grid element map until 
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the termination condition is satisfied. The ant density data, which record the 

movement tracks of ants in the grid element map, can be obtained after the iterative 

search process. In each iteration, an ant heuristically searches only the neighboring 

grid points. Thus, the ant density data are not obviously impacted by regional 

variations of geochemical background. In other words, transforming element 

concentration data into the ant density data can bate the impact of regional variation 

of geochemical background on geochemical anomaly detection. As a result, low or 

strong geochemical anomalies can be differentiated from geochemical background 

based on ant density data using a threshold method. The ant density data can also 

slightly enhance small and weak anomalies in the grid element map if the length of 

Taboo List is defined properly. Therefore, the ant density data are superior to the 

corresponding interpolated element concentration data in regard to geochemical 

anomaly identification. 

The following parameters were empirically determined in our case study: m =123; 

tmax = 5000; repeatmax = 3; α = 2.5; β = 3.0; ρ = 0.08; 0 = 0.001; min = 1.0E-38; 

Taboo = 20 for Pb and Taboo = 40 for other elements; c = zmax*10.0; dmin = 0.001 for 

Au; dmin = 0.00001 for Ag; and dmin = 0.1 for Cu, Pb, and Zn. Where m is the number 

of ants, tmax is the number of iterations, repeatmax is the number of times that the 

iterative searching process is repeated, α is the weight coefficient of pheromone trail, 

β is the weight coefficient of element concentration value, ρ is the pheromone 

evaporation coefficient, 0 is the initialization value of pheromone trail, min is the 

allowed minimum value of pheromone trail, Taboo is the length of Taboo List, c is the 
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regularization constant, dmin is fluctuation limitation, and zmax is the maximum 

element concentration value in a grid element map. 

According to the above predefined parameters, 123 artificial ants were randomly 

put into each grid element map and then the ant colony completed 5000 heuristic 

search steps in a grid element map. This procedure was repeated one to ten times. By 

comparing the geochemical identification results, we found that increasing the 

number of repetitions could not obviously improve the performance of geochemical 

anomaly detection. For the results shown in this paper, only three times of repetition 

were used. The ant density data for the grid element map were obtained by computing 

the average of the ant density values obtained from the three repetitions. 

4.5 Geochemical anomaly identification 

A user-defined threshold can be used to identify geochemical anomalies from the 

ant density data generated by the ant colony algorithm. The Youden index (Youden, 

1950; Ruopp et al., 2008) can be used to determine the optimal threshold in 

geochemical anomaly identification (Chen, 2014). In medical statistics, the Youden 

index is a single statistic that captures the performance of a diagnostic test. It is 

defined as the difference of true positive rate minus false positive rate. Its value 

ranges from 0 to 1, and has a zero value when a diagnostic test gives the same 

proportion of positive results for groups with and without the disease, i.e, the test is 

useless. A value of 1 indicates that there are no false positives or false negatives, i.e., 

the test is perfect. The index gives equal weight to false positive and false negative 

values, so all tests with the same value of the index give the same proportion of total 
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misclassified results. In geochemical anomaly identification, the Youden index can be 

used to express the association between the recognized geochemical anomalies and 

the known mineral deposits; the bigger the value of the Youden index is, the stronger 

the association of recognized geochemical anomalies is with the known mineral 

deposits. 

We used the Youden index to determine optimal thresholds for Au, Ag, Cu, Pb, and 

Zn anomaly identification from both the ant density data and the interpolated element 

concentration data. The maximum Youden indices, the optimal thresholds, and the 

percentage of the study area and the percentage of the known mineral deposits in the 

identified anomalies are listed in Table 3. The geochemical anomalies identified from 

the interpolated Au, Ag, Cu, Pb, and Zn concentration data and from the 

corresponding ant density data are shown in Fig. 9. 

4.6 Discussion 

Table 3 shows the following statistical results: (a) the Au anomalies identified from 

the ant density data occupy 4.2% of the study area and contain 24% of the known 

mineral deposits, and the Au anomalies identified from the interpolated Au 

concentration data occupy 10.1% of the study area and contain 36% of the known 

mineral deposits; (b) the Ag anomalies identified from the ant density data occupy 2.7% 

of the study area and contain 24% of the known mineral deposits, and the Ag 

anomalies identified from the interpolated Ag concentration data occupy 5.7% of the 

study area and contain 40% of the known mineral deposits; (c) the Cu anomalies 

identified from the ant density data occupy 16.4% of the study area and contain 40% 
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of the known mineral deposits, and the Cu anomalies identified from the interpolated 

Cu concentration data occupy 28.7% of the study area and contain 64% of the known 

mineral deposits; (d) the Pb anomalies identified from the ant density data occupy 

10.1% of the study area and contain 40% of the known mineral deposits, and the Pb 

anomalies identified from the interpolated Pb concentration data occupy 9.0% of the 

study area and contain 60% of the known mineral deposits; and (e) the Zn anomalies 

identified from the ant density data occupy 13.8 % of the study area and contain 52% 

of the known mineral deposits, and the Zn anomalies identified from the interpolated 

Zn concentration data occupy 28.5 % of the study area and contain 80% of the known 

mineral deposits. Thus, compared with the geochemical anomalies identified from the 

element concentration data, those identified from the ant density data usually have a 

higher Youden index value, are smaller in size, and contain more of the known 

mineral deposits. 

Fig. 9 shows that: (a) robust anomalies identified from the element concentration 

data coincide with those identified from the ant density data; (b) each large-scale 

robust anomaly identified from the element concentration data usually corresponds to 

several small robust ones identified from the ant density data, in other words, the ant 

colony algorithm tends to separate a large-scale robust anomaly into several small 

ones; (c) some small weak anomalies identified from the element concentration data 

correspond to one anomaly identified from the ant density data; (d) some anomalies 

identified from the ant density data can not be identified from the element 

concentration data, i.e., the ant colony algorithm can identify some anomalies that can 
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not be identified from the element concentration data; and (e) some small weak 

anomalies identified from the element concentration data can not be identified from 

the ant density data, i.e., the ant colony algorithm can omit some small weak 

anomalies that can be identified from the element concentration data. 

The identified Au, Ag, Cu, Pb, and Zn anomalies are distributed spatially around 

intermediate-acid intrusive rocks and the robust anomalies occur mainly in the 

volcaniclastic-sedimentary sequence of the Devonian Ashele Formation. As 

mentioned in Section 4.1, most of the known mineral deposits occur in this geological 

formation. Therefore, Au, Ag, Cu, Pb, and Zn anomalies that occur in the 

volcaniclastic-sedimentary sequence of the Devonian Ashele Formation around the 

intermediate-acid intrusive rocks are prospective targets for further mineral 

exploration. 

5. Conclusion 

The ant colony algorithm can correctly identify geochemical anomalies from grid 

element data from the Altay district in northern Xinjian in China, and the spatial 

distribution of the identified geochemical anomalies strongly coincide with the 

ore-related geological formations in the study area. Anomalous areas detected by the 

ant colony algorithm occupy 9.5% of the study area and contain 36% of the known 

mineral deposits; and anomalous areas identified using the Youden index method 

occupy 16.4% of the study area and contain 56% of the known mineral deposits. Thus, 

the ant colony algorithm is a feasible method for geochemical anomaly detection. 

The configuration parameters, to some extent, affect the performance of the ant 
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colony algorithm in geochemical anomaly detection. The values of these parameters 

need to be empirically determined in practice. The case study shows that the ant 

colony algorithm performs best if (a) the number of ants is approximately equal to the 

square root of the total number of grid points, (b) the length of the Taboo List is 

between 20 and 50, and (c) the regularization constant is approximately 10 times the 

maximum value of the interpolated element concentration data. 
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Table and Figure captions: 

Table 1 Python pseudo-codes for the ant colony algorithm of geochemical anomaly 

detection. 

Table 2 AUCs, the standard deviations of AUCs, and ZAUCs for Au, Ag, Cu, Pb, and 

Zn. 

Table 3 The Youden index, optimal threshold, anomaly area percentage, and the 

percentage of mineral deposits in anomaly area. 
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Fig. 1. Average Au concentration value for iterations at different number of ants. 

Fig. 2. Average Au concentration value for iterations at different lengths of Taboo 

List. 

Fig. 3. Average Au concentration value for iterations at different fluctuation 

limitations. 

Fig.4. Average Au concentration value for iterations at different ρ-values. 

Fig. 5. Simplified geologic map on which the known mineral deposits are 

superimposed. 

Fig. 6. Drainage basins on which the stream sediment sample locations are 

superimposed. 

Fig. 7. Contour maps of element concentration values on which the known mineral 

deposits are superimposed. 

Fig. 8. ROC curves for Au, Ag, Cu, Pb, and Zn. 

Fig. 9. Geochemical anomaly contour maps on which the known mineral deposits are 

superimposed. 
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Figure 9ag 
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Table 1 Python pseudo-code for the ant colony algorithm of geochemical anomaly 

detection 

Input a grid map of nrow × ncol into buffer [nrow × ncol] 

Initialize n_buffer[nrow × ncol] to record the number of the ants that passes each 

grid 

Initializing α, β, ρ, m, max_t, 0, min_, c, min_d, taboo, max_repeat 

For repeat in range (max_repeat): 

Initialize current[m] to record the grids that m ants locate at step t 

Initialize Tao[nrow* ncol, 8] to record ij 

Initialize TL[m, taboo] to record the grids that are visited recently by each ant 

Set m ants randomly into the map 

    For t in range (max_t): 

        Initialize deta[nrow * ncol, 8] to record the updating quantity of ∆ij 

        self.active = 0 

        For k in range (m): 

            Initialize position[] as null array 

            For i in (8): 

                If i is not in the TL[k, taboo]: 

                    Add the grid number i into position[] 

Compute ant-routing index using Eq.(5) 

                    Record the grid with the biggest ant-routing index 

                    select = the grid with max index 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

54 
 

            If position != []: 

                Update TL[k, taboo] 

                Self.active += 1 

                If buffer[select] – buffer[current[k]] > min_d: 

                   Compute ∆ij (0  i < nrow* ncol; 0  j< 8) using Eq. (6) 

                   n_buffer[ll] += 1.0 

                   current[k] = select 

               Else: 

                   #Randomly choose one neighbor from position[] 

                   select = random.choice(position) 

                   Compute ∆ij (0  i < nrow* ncol; 0  j< 8) using Eq. (6) 

                   n_buffer[i] += 1 

                   current [k] = select 

        For i in range (nrow * ncol): 

            For j in range (8): 

                Update ij using Eq. (7) 

                If ij <= 0.0: 

                    ij = min_ 

        if self.active == 0: 

            break 

For i in range (nrow * ncol): 

    n_buffer[i] /= max_repeat 

End the algorithm 
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Table 2 AUCs, the standard deviations of AUCs, and ZAUCs for Au, Ag, Cu, Pb, and 

Zn 

 Au Ag Cu Pb Zn 

AUCs 
0.743 0.703 0.574 0.786 0.691 

Standard 

Deviation 
0.057 0.059 0.060 0.055 0.059 

ZAUC 4.249 3.445 1.242 5.245 3.234 
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Table 3 The Youden index, optimal threshold, anomaly area percentage, and the 

percentage of mineral deposits in anomaly area 

 Au Ag Cu Pb Zn 

Element 

concentra

tion data 

Youden 

index 
0.202 0.310 0.188 0.460 0.351 

Optimal 

threshold 
2.579 0.050 22.376 26.821 66.727 

Area% 10.1% 5.7% 28.7% 9.0% 28.5% 

Deposit% 36.0% 40.0% 64.0% 60.0% 80.0% 

Ant 

density 

data 

Youden 

index 
0.174 0.198 0.142 0.241 0.304 

Optimal 

threshold 
10.240 8.373 2.827 9.630 4.040 

Area% 4.2% 2.7% 16.4% 10.1% 13.8% 

Deposit% 24.0% 24.0% 40.0% 40.0% 52.0% 
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Highlights 

 

 Use an ant colony algorithm to detect geochemical element anomalies. 

 Use ROC curve to assess the performance of metallogenic indicators. 

 Use AUC metric to assess the performance of metallogenic indicators. 

 Use the Youden index to determine the optimal threshold of geochemical data. 




