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Ant Colony Algorithm for Building Energy Optimisation Problems and Comparison with 

Benchmark Algorithms 

Keivan Bamdada, Michael E. Cholettea, Lisa Guana, John Bella 
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Queensland University of Technology (QUT), Brisbane, Queensland, Australia 

Abstract 

In the design of low-energy buildings, mathematical optimisation has proven to be a powerful tool 

for minimising energy consumption. Simulation-based optimisation methods are widely employed 

due to the nonlinear thermal behaviour of buildings. However, finding high-quality solutions with 

reasonable computational cost remains a significant challenge in the building industry.  

In this paper, Ant Colony Optimisation for continuous domain (ACOR) is developed and applied to 

optimise a commercial building in Australia. The results for a typical commercial building showed 

that optimisation can achieve an additional energy savings of more than 11.4%, even after some 

common energy saving measures were implemented (e.g. double pane windows). The performance 

of ACOR was compared to three benchmark optimisation algorithms: Nelder-Mead (NM) algorithm, 

Particle Swarm Optimisation with Inertia Weight (PSOIW) and the hybrid Particle Swarm 

Optimisation and Hooke-Jeeves (PSO-HJ). This comparison showed that ACOR was able to 

consistently find better solutions in less time than the benchmark algorithms. The findings 

demonstrate that ACOR can further facilitate the design of low-energy buildings.  

Keywords: Optimisation Algorithm Benchmarking; Building Optimisation; Ant Colony Optimisation; 

Particle Swarm Optimisation; Australian Commercial Building 
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1 Introduction 

Reducing energy consumption is one of the world’s most challenging issues, particularly with 

increases in population and economic growth. According to the United Nations Environment 

Program in 2009, buildings consume approximately 40% of the world's energy and they are 

responsible for approximately one-third of greenhouse gas emissions in the world [1]. Clearly, 

improving energy efficiency of buildings is an important issue that not only decreases CO2 emissions, 

but also reduces the need for non-renewable energy sources.  

However, complex interactions between design and environmental variables complicate the design 

of energy efficient buildings. This is particularly true after “simple” energy saving measures are 

already employed (e.g. increasing insulation thickness) and it’s not immediately obvious how to 

further reduce energy consumption. Mathematical optimisation is an important technique for 

systematically managing the numerous trade-offs in design. These Building Optimisation Problems 

(BOPs) typically seek to minimise the energy consumption of a building by employing simulation-

based optimisation (coupling building simulation software with an optimisation algorithm). The 

extensive body of research in this area has clearly demonstrated that optimisation can dramatically 

reduce the energy consumption of buildings [2-12].  

Nevertheless, solving BOPs remains challenging: Currently-available methods require hundreds to 

thousands of time-consuming building simulations to find the final solution, which may take several 

weeks [13, 14]. In addition, the optimisation problem complexity increases strongly as the number of 

optimisation variables increases. More importantly, since building performance measures (e.g. 

energy consumption) generally have many local optima, the optimisation algorithm may fall into 

local optimum which may be far from the global optimal solution. These complexities in BOPs have 

driven research into new solution algorithms. However, reducing optimisation time and finding 
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higher-quality solutions remains an important research area to increase utilisation of optimisation as 

a design tool [15].  

Therefore, the principle aim of this research is to develop a new building optimisation approach that 

improves upon the benchmark algorithms in terms of the following key performance metrics: 1) 

solution quality (objective value), 2) consistency (reliably achieving solutions close to the optimal), 

and 3) computational cost (number of simulations). Using these metrics, a detailed statistical 

comparison of the new BOP algorithm is conducted. In addition, the detailed statistical analysis 

represents a significant contribution, since no detailed study on the convergence performance 

(speed and consistency) has been conducted to date. 

In this paper, a new building optimisation approach based on Ant Colony Optimisation for 

continuous domain (ACOR) is proposed. ACOR is an optimisation method that has been developed in 

recent years, and has shown promise when compared with other popular optimisation algorithms 

[16]. First, a method for handling interval constraints (typically presented in BOPs) is added to the 

ACOR algorithm. Subsequently, this augmented ACOR algorithm is used to optimise a typical 

commercial building in selected cities in Australia for the first time. These optimisation experiments 

are used to both rigorously evaluate the effectiveness of the ACOR algorithm against the benchmark 

(using the aforementioned performance metrics), and to provide new design insight for designing 

low-energy commercial buildings in Australia.  

The remainder of this paper is structured as follows. Section 2 discusses the existing literature for 

BOPs while Section 3 details the formulation of the BOP and the optimisation algorithms. In Section 

4, the efficiency of ACOR is evaluated by comparing its results to baseline simulations and to the 

benchmark optimisation algorithms. Finally, Section 5 presents the conclusions and future work of 

the research. 
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2 Optimisation algorithms for BOPs 

The dominant method for solving BOPs is simulation-based optimisation, where building simulation 

software is coupled with an optimisation algorithm. Frequently, the Derivative-free (DF) optimisation 

algorithms are employed due to discontinuities and multi-modal behaviour of building optimisation 

problems (BOPs) [13, 14, 17]. In these methods, building simulation plays the role of the objective 

function (e.g. energy consumption, thermal comfort, etc.) and the decision variables are 

manipulated by optimisation algorithm to iteratively improve the objective function.  

Many optimisation algorithms have been applied to solve BOPs such as Simulated Annealing [18] 

Genetic Algorithm (GA) [18-22], harmony search algorithm [23] Particle swarm optimisation 

algorithm (PSO) [24, 25], Tabu Search [26] and artificial bee colony [27]. However, the selection of 

the best optimisation algorithm is still an open question, since it is highly dependent on the specifics 

of the problem [28, 29]. Several studies investigated the performance evaluation of optimisation 

algorithms in solving BOPs in order to find which algorithm performs best for BOPs. Wetter and 

Wright [30] compared the performance of a Genetic Algorithm (GA) and a Hooke–Jeeves (HJ) 

algorithm in minimising energy consumption of a building. Their results showed that the GA has a 

better performance than the HJ algorithm and the latter may also fall into a local optimum. In 

another study, Wetter and Wright [31] compared the performance of nine different optimisation 

algorithms including a gradient based algorithm (Discrete Armijo gradient algorithm), direct search 

Algorithms (Coordinate search algorithm, HJ algorithm and Simplex algorithm of Nelder and Mead), 

Meta heuristic algorithms (Simple GA and two versions of PSO), and Hybrid PSO-HJ algorithm in 

solving simple and complex building models. It was found that the Hybrid Particle Swarm 

Optimisation/Hooke-Jeeves (PSO-HJ) achieved the largest energy reduction among all algorithms. 

Their results also showed that the GA was close to the optimal point with fewer simulations than 
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PSO-HJ. In contrast, it was observed that Nelder and Mead and Discrete Armijo gradient algorithm 

failed to find high-quality solutions. 

More recent comparative studies have also been carried out for BOPs. Tuhus-Dubrow and Krarti [4] 

compared the performance of GA and PSO, and found the GA obtained the solutions which were 

close to PSO with the fewer number of building simulations. Another study investigated the 

performance of GA, PSO and Sequential Search technique, and indicated that the computational 

efforts for the Sequential Search technique are higher than others [7]. Hamdy et al. [32] compared 

the performance of three multi-objective algorithms: Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II), NSGA-II with active archive (aNSGA-II) , and NSGA-II with a passive  archive strategy 

(pNSGA-II). It was found aNSGA-II is more consistent in finding optimal solutions with a lower 

number of function evaluations than others. Hamdy et al. [33] compared the performance of seven 

multi-objective evolutionary algorithms with respect to different criteria. Their results indicated that 

two-phase optimisation using the genetic algorithm (PR_GA) can be considered the first choice for 

solving multi-objective BOPs. Bucking et al. [34] compared the performance of the modified 

Evolutionary Algorithm (EA) and Mutual Information Hybrid Evolutionary Algorithm (MIHEA) against 

GenOpt’s particle swarm inertial weight (PSOIW) algorithm. Results indicated that MIHEA finds 

better solutions with less computational time. Kämpf et al. [35] examined the performance of two 

hybrid algorithms (Covariance Matrix Adaptation Evolution Strategy with the Hybrid Differential 

Evolution (CMA-ES/HDE ) and PSO-HJ) in minimizing the five standard benchmark functions of 

Ackley, Rastrigin, Rosenbrock, Sphere functions and a highly-constrained function as well as real 

buildings. It was observed that both algorithms perform well but CMA-ES/HDE is preferable when 

the optimisation problem is highly multi-modal. Another study showed that CMA-ES with sequential 

assessment can find the same results as a GA in less time [36]. PSO showed a slightly better 

performance than GA in finding the optimal size of the solar system components for a single-family 
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house [37]. Another study showed that a combination of GA with a modified simulated annealing 

algorithm can find more reliable results than the GA solely [38]. Futrell et al. [39] compared four 

optimisation algorithms in a building design for daylighting performance. They compared Simplex 

Algorithm of Nelder and Mead (NM), HJ, PSOIW, and PSO-HJ. They found that PSOIW found the best 

overall solution but PSO-HJ found solutions which are very close to the best solutions in less time. 

As the literature review revealed, the application of optimisation in to buildings remains an active 

research area. In addition, comparative studies in literature indicate Particle Swarm Optimisation 

with Intertia Weight (PSOIW) and the hybrid PSO-HJ algorithms perform well on BOPs [34, 35, 37, 

39], outperforming many other popular optimisation algorithms (e.g. GA). Accordingly, they are 

selected as benchmark algorithms against the proposed algorithm in this paper. In addition to these 

benchmark algorithms, the NM algorithm is also selected as a benchmark direct search algorithm. 

It should be noted that with regard to buildings’ design using simulation-based optimisation in 

Australia, there are very few studies [40]. This highlights the importance of the results of current 

study which can be used practically to design high performance buildings in Australia.   

3 Methodology 

The building optimisation problem considered in this paper can be formally stated as  

          min  𝑓(𝐱) 

subject to:  𝐱 ∈ 𝕏 ⊆ ℝ𝑁 
(1) 

where 𝑓(⋅): 𝕏 → ℝ is the objective function, 𝕏 ⊂ ℝ𝑁 is the feasible space, 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑁]  is the 

vector of independent design variables. For the BOP considered in this paper, the feasible design 

space is simply stated in terms of upper and lower bounds on parameters: −∞ < 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 <

+∞, 𝑖 = 1,2, … , 𝑁 where 𝑙𝑖 and 𝑢𝑖 are the lower bound and the upper bound of the variable 𝑖. Since 

the decision variable input ranges can be normalized, we may assume (without loss of generality) 
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that 𝑙 = 0 and 𝑢 = 1. The objective function, 𝑓(⋅), is the building annual end use energy 

consumption (MJ/m2 Year), which is calculated by EnergyPlus [41], which can be written as follows:  

𝑓(𝐱) = 𝐸𝑐(𝐱) + 𝐸𝑓(𝐱) + 𝐸𝑙(𝐱) + 𝐸𝑝(𝐱) + 𝐸ℎ(𝐱) + 𝐸𝑚(𝐱) (2) 

where 𝐸𝑐  is the energy consumption for space cooling (MJ/m2 Year), 𝐸𝑓 is the energy consumption 

of the supply and return fans of HVAC system (MJ/m2 Year), 𝐸𝑙  is the energy consumption of 

lighting (MJ/m2 Year), 𝐸𝑝 is the energy consumption of pumps (MJ/m2 Year), 𝐸ℎ is the energy 

consumption for space heating (MJ/m2 Year) and 𝐸𝑚 is the energy consumption of both interior 

equipment and heat rejection1(MJ/m2 Year). 

The remainder of this section is organized as follows. In Section 3.1, an ACOR algorithm for solving 

(1) is detailed, while Section 3.2 discusses Nelder and Mead with the Extension of O’Neill algorithm, 

and Section 3.3 details PSOIW and PSO-HJ (chosen after thorough review of the literature). In 

Section 3.4, the building to be optimised is detailed along with two baseline design simulations.  

3.1 Optimisation Algorithms: ACOR   

Ant Colony Optimisation (ACO) is a metaheuristic which was inspired by observation of ant 

behaviour. This algorithm was first designed to solve discrete optimisation problems and later 

extended to continuous variables [16, 42]. This extension, called Ant Colony Optimisation for 

continuous domain (ACOR) [16], will be employed to optimise the building energy performance. In 

this paper, a strategy to deal with boundary constraints has been added to the original ACOR 

algorithm. 

ACOR operates on a solution archive which is shown in Figure 1. This archive contains 

the values of the 𝑵 decision variables 𝐱𝒋 = [𝒙𝒋
𝟏, 𝒙𝒋

𝟐, … , 𝒙𝒋
𝑵] and the associated objective 

                                                            
1 For the HVAC system considered, heat rejection is the energy consumption of cooling tower fan. 



Page 8 of 33 

 
 

 

function values 𝒇(𝐱𝒋), obtained by simulating the building to obtain the annual energy 

consumption. Solutions in the archive are sorted from lowest to highest objective values, i.e.  

𝑓(𝐱1) ≤  𝑓(𝐱2) ≤  …  ≤  𝑓(𝐱𝑗) ≤  …  ≤  𝑓(𝐱𝑀) (3)  

New candidate solutions are generated according to a Gaussian kernel probability density function 

(PDF) based on the solutions in the archive  

 

𝐺𝑖(𝑥) = ∑ 𝜔𝑗

𝑀
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where 𝐺𝑖(𝑥) is the Gaussian kernel for the 𝑖th dimension of the solution, 𝑔𝑗
𝑖 (𝑥) is the 𝑗th sub-

Gaussian function for the 𝑖th dimension while 𝜇𝑗
𝑖  and 𝜎𝑗

𝑖   are the 𝑗th dimensional mean value and the 

standard deviation, respectively. The weights 𝜔𝑗 are set so that solutions with lower objective values 

are preferred, since they likely indicate neighbourhoods where good solutions may be found. The 

weights are assigned based on the position of a solution in the archive 

𝜔𝑗 =
1

𝑞𝑀 √2𝜋
 𝑒

−
(𝑗−1)2

2𝑞2𝑀2     (5) 

where 𝑞 is a free parameter that controls the degree that to which the lowest objective solution is 

preferred. Low values of 𝑞 increase the weights of the best solutions relative to the other solutions 

in the archive.  

The mean and standard deviation of the of the sub-Gaussians are also set based on the archive 

solutions 

𝜇𝑗
𝑖 = 𝑥𝑗

𝑖  (6) 

𝜎𝑗
𝑖 = 𝜉 ∑

|𝑥ℓ
𝑖 − 𝑥𝑗

𝑖|

𝑀 − 1

𝑀

ℓ=1

 (7) 
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In other words, the standard deviation is set according to the average distance of 𝐱𝑗  from the other 

𝑀 − 1 solutions in the archive along dimension 𝑖 in the parameter space. The free parameter 𝜉 is 

simply a scaling factor which allows users to set the percentage of this average. 

The new candidate solutions are generated according to the distribution in Eq. (4) via a two-stage 

process. First, a solution from the archive is randomly selected with probability 

𝑃𝑗 =
𝜔𝑗

∑ 𝜔𝑟
𝑀
𝑟=1

 (8) 

Obviously, solutions with higher 𝜔𝑗 will be more probable. A new candidate solution, �̃� is randomly 

generated according to the component-wise probability density functions 

𝑔𝑗
𝑖 (�̃�𝑖) =

1

𝜎j
𝑖√2𝜋

𝑒
−

(�̃�𝑖−𝜇j
𝑖)

2

2𝜎j
𝑖2  

                  𝑖 = 1,2, … , 𝑁        
(9) 

where 𝑗 is the selected solution from the archive. The objective value of this solution is then 

evaluated and the generation procedure repeats until 𝑚 candidate solutions are generated. The 

archive is then updated by selecting the best 𝑀 solutions from the 𝑀 + 𝑚 solutions. To do the 

optimisation with ACOR algorithm all variables are normalised between zero and one (𝑙𝑖 =

0 𝑎𝑛𝑑 𝑢𝑖 = 1). However, during the generation of new solutions, a variable (𝑥𝑖) may violate the 

domain boundary constraint. If this occurs, 𝑥𝑖  is repaired as follows: 

if  𝑥𝑖 < 0 →     𝑥𝑖 = |𝑥𝑖|   

if  𝑥𝑖 > 1 →     𝑥𝑖 = 1 − (𝑥𝑖 − 𝑓𝑙𝑜𝑜𝑟(𝑥𝑖) ) 
(10) 

The overall algorithm is summarized below. 

0. Select values for the parameters 𝑞, 𝜉, 𝑀, 𝑚 ≤ 𝑀 
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1. Initialize. Randomly generate 𝐱𝑗  𝑗 = 1,2, … , 𝑀 according to component-wise uniform 

distributions2 between the upper and lower bounds. Compute the objective values. 

2. Sort solutions in ascending order according to their objective values so that Eq. (3) is 

satisfied. 

3. Calculate weights according to Eq. (5) 

4. Generate a new solution.  

a. Select a solution 𝑗 from the archive with probabilities from Eq. (8) 

b. Generate a solution according to Eq. (9) 

c. Adjust any variable values violating constraints according to Eq. (10) 

5. Repeat  step 4, 𝑚 times 

6. Evaluate objectives of 𝑚 new solutions 

7. Select the best 𝑀 solutions from the 𝑀 + 𝑚 solutions available 

8. Check stopping criteria. If they are not satisfied, return to 2. 

A key challenge in the application of any optimisation algorithm is striking the proper balance 

between exploration of the parameter space and intensification of the search near quality solutions. 

In ACOR this behaviour is controlled using the parameters 𝑞 and 𝜉. Smaller values of 𝑞 promote 

intensification by assigning relatively large weights to better solutions in the archive and thus 

generating more candidate solutions in the neighbourhood of the best solutions. Larger values of 𝑞 

increase exploration by assigning more uniform weights to solutions in the archive. The parameter 𝜉 

is a normalized width of the sub-Gaussians; higher values promote increased exploration around a 

given solution, while lower values increase intensification near it. 

                                                            
2 One could also use a space-filling algorithm (e.g. Latin Hypercube) to conduct this step. 
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3.2 Optimisation Algorithms: Nelder and Mead with the Extension of O’Neill 

The first benchmark algorithm is Nelder and Mead (NM) algorithm [43] which is a popular direct 

search method and can be applied for nonlinear optimisation problems. In a problem with 𝑛 

variables, this algorithm generates 𝑛 + 1 vertices to construct a simplex (i.e. a triangle with two 

variables), and then moves or reshapes this simplex to find the better solutions. To generate new 

vertices in a minimisation problem, the NM algorithm calculates the value of objective function 

associated with each vertex and replace vertex with highest value of objective function (worst 

vertex) with a new vertex. New vertices are generally constructed by reflecting the worst vertex to a 

new vertex. Additional mechanisms such as expansion of the simplex and contraction of the simplex 

may be performed which were detailed in [44]. As this algorithm may fail to converge, starting from 

different initial points could improve its efficiency [39].  

3.3 Optimisation Algorithms: PSOIW and PSO-HJ 

The next two benchmark algorithms which were selected from the literature are both based on 

Particle swarm optimisation (PSO), which is inspired by the social behaviour of birds. PSO is a 

metaheuristic optimisation algorithm introduced in [45]. PSO seeks the optimum solutions by 

changing the position of “particles” (which represent particular values of the building parameters in 

this study) to seek better solutions and avoid local optima.  

The first benchmark algorithm will be Particle Swarm Optimisation with Inertia Weight (PSOIW) 

which was developed to improve the performance of the original PSO by better controlling the 

balance between global and local search [46, 47]. In PSOIW, the velocity and position of a particle 

are determined as follows:  

𝐯𝑖(𝑘 + 1) =  𝜔(𝑘)𝐯𝑖(𝑘) + 𝑐1𝜌1(𝑘)(𝐩𝑙,𝑖(𝑘) − 𝐱𝑖(𝑘)) + 𝑐2𝜌2(𝑘)(𝐩𝑔,𝑖(𝑘) − 𝐱𝑖(𝑘))  (10) 
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𝐱𝑖(𝑘 + 1) =  𝐱𝑖(𝑘) + 𝐯𝑖(𝑘 + 1) (11) 

Where 𝐱𝑖 is the position of 𝑖th particle, 𝑘 is the generation number, 𝐯𝑖 is the particle velocity, 𝜌1 and 

𝜌2 are uniformly distributed random numbers. The variable  𝐩𝑙,𝑖(𝑘) is the position of the particle 

with the best objective value observed so far for particle 𝑖, 𝐩𝑔,𝑖(𝑘) is the position or the particle with 

the best objective value so far3, 𝜔(𝑘) is a non-increasing inertia weight, and 𝑐1 and 𝑐2 are algorithm 

parameters that control the relative influence of the “global” and local optima on the particle 

velocity update in Eq. (10). The interested reader is referred to [46, 47] for further details.  

The last benchmark algorithm is the hybrid PSO-HJ algorithm. PSO searches globally to find near 

optimal solutions and then Hooke-Jeeves searches locally to refine the solutions. PSO stops in this 

hybrid algorithm after a finite number of iterations or generations and then Hooke-Jeeves refines 

the PSO solution and terminates when no improvement is found [31]. 

3.4 Building Simulation  

In this paper, a ten-storey building called building “Type A” will be used as a case study. Australian 

Building Code Board (ABCB) [48, 49] has recommended this building to represent the typical large 

commercial building located in Australian Capital Business Districts (CBD). This building has been 

studied by many researchers [50-59]. However, different simulation assumptions and input values 

have been used in the literature which has resulted in different building simulation results. In this 

research, the building configuration, parameters, and assumptions (e.g. internal loads) are as 

specified in the ABCB recommendations [48, 49, 58]. The details of this configuration will now be 

discussed.  

                                                            
3 Actually, the 𝐩𝑔,𝑖 is the best objective found amongst the particles in a neighbourhood of particle 𝑖, which 

could potentially be all particles. 



Page 13 of 33 

 
 

 

Building Type A is an office building (tower) with the heavy-weight concrete construction and gross 

floor area of 9985 m2. This building includes all features of real buildings including multiple thermal 

zones, internal loads of occupancy, lighting, equipment, auxiliary service equipment and HVAC 

system. The template VAV system of the EnergyPlus was selected to model a variable air volume 

system with water cooled chiller (COP = 3.7) and the heating and cooling sizing factors are 1.25. The 

prototypes and details of building Type A are given in Figure 2 and Table 1 and Table 2. The 

schedules used for occupancy, lighting (limited control), equipment and HVAC working hour were 

the same as given by the National Australian Built Environment Rating System (NABERS) [56].  

In this study, two different scenarios are used for comparison to the optimised results. Scenario A is 

Building Type A as specified. The second scenario, Scenario B, is identical to Scenario A, but adds 

four typical “rule of thumb” modifications to improve energy efficiency: 1) additional (0.5 meter) 

overhangs above windows, 2) double-pane (U =  2.678 W/m2 K), Solar Heat Gain Coefficient 

(SHGC) = 0.427 and Visible Transmittance (VT) =  0.308)  instead of single-pane windows, 3) using 

daylighting control for each perimeter zone with one reference point with 320 lux set point at a 

height of 0.8 (𝑚) from the floor and continuous lighting control (minimum electric power and light 

output =  0), and 4) removing temperature set back.  

4 Results 

In this section the energy performance of the baseline scenarios and optimised buildings are 

presented. Section 4.1 details the results for the baseline scenarios in a number of climates 

represented by four different Australian cities. The results are then compares the results to available 

data and literature. In Section 4.2 the ACOR-optimised building for each city is compared to the 

baseline scenarios and the benchmark algorithms. 
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4.1 Baseline Building Simulation Results 

Figure 3 shows the simulation results for the annual energy consumption per unit floor area for 

building Type A for both Scenario A and Scenario B, and the average state energy intensity of 

office buildings for four cities. The annual energy consumption in Scenario B respect to 

Scenario A reduced by 32.5%, 30.2%, 35.2 % and 38.1% for Brisbane, Darwin, Hobart and 

Melbourne, respectively. All cities except Darwin, the simulation results of annual energy 

consumption are close to the corresponding state average (within one standard deviation of 

those reported in [60]). In addition, for all cities, simulation results of Scenario A of present 

study are very close to the existing study [58]. Some possible reasons for the discrepancy for 

Darwin results include: different building constructions in that climate, higher cooling set-

point, or differences in occupant behaviour [58].  

4.2 Optimisation Results 

The simulation-based optimisation methods were applied to building Type A in four different 

Australian climates: Darwin, with hot humid summers and warm winters; Brisbane, with warm 

humid summers and mild winters; Melbourne with warm summers and cool winters; Hobart, with 

mild to warm summers and cold winters [51]. The objective function is to minimise the annual 

energy consumption of the building (Eq. 2) with respect to 15 listed in Table 3. The average number 

of variables in BOPs was selected here [13], and the feasible search intervals were determined 

according to other similar studies [13, 15, 31, 34-36]. 

To conduct the building optimisation, a MATLAB code was developed which connects EnergyPlus to 

the ACOR optimisation algorithm. In contrast,  GenOpt optimisation software was used to perform 

optimisation with NM, PSOIW and PSO-HJ algorithms [44]. Ten optimisation runs of each method 

were conducted for each city. A High Performance Computing (HPC) cluster was used since between 
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3000 and 4600 building simulations were required for each run. The time required for each run with 

EnergyPlus 8.1.0 is between three and five days. 

In order to provide a fair comparison among the different optimisation algorithms, the number of 

function evaluations (simulations) to achieve the optimised result should be the same. In the hybrid 

PSO-HJ algorithm, PSO stops after the pre-defined number of iterations (3000 building simulations). 

However, Hooke-Jeeves terminates when no improvement is found (not after a set number of 

iterations). Thus, the number of simulations for each run was set in the following way. At first, the 

PSO-HJ algorithm was run to completion and the number of function evaluations was calculated. 

This number was considered as the stopping criterion for ACORs, NM and PSOIW (though the exact 

number of function evaluations will vary slightly due to the specifics of each algorithm).  

An important factor in optimisation algorithm performance is the values for the free parameters. 

The parameters used in NM are those recommended in [31] and are shown in Table 4. The 

parameters used in the PSOIW and PSO-HJ algorithms are shown in Table 5. These parameters were 

set based on recommendations from previous studies which analysed PSO performance on 

benchmark functions and BOPs [35, 61]. The values for inertia weight in PSOIW and the values of 

parameters in HJ algorithm selected here were recommended by [31]. Parameters used in the ACOR 

recommended in [16] and are also shown in Table 6.  
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The optimisation results are presented in Table 7. The normalized energy consumption per unit floor 

area is presented to provide an easier comparison of results. Table 7 shows the best parameter sets 

among all ten runs for each algorithm in each city. For Brisbane, Hobart and Melbourne, the best 

solutions were obtained by ACOR (1) after 3468, 4171 and 3372 building simulations, respectively. 

ACOR (2) found the best solution for Darwin after 3519 building simulations. In contrast, PSOIW 

found the worst solution for Hobart and Darwin after 3800 and 3600 building simulations, 

respectively. Likewise, NM found the worst solutions Brisbane and Melbourne, respectively.  

Table 7 also shows that the best building orientations are approximately zero degrees for Darwin, 

Hobart and Melbourne and almost ten degrees relative to North (clockwise) for Brisbane. For all 

cities, the optimum wall has the minimum solar absorptance, and best roof has the maximum 

emissivity with minimum solar absorptance. The optimum wall insulation thickness is 0.01 (𝑈𝑤𝑎𝑙𝑙  =

1.88 W/m2K) while its value before optimisation was 0.1. The selection of the minimum allowable 

insulation thickness can be explained as follows. The HVAC system operates only during the daytime 

and the internal loads are fairly high. Due this combination of usage factors and the relatively mild 

Australian climates, the dominant mode of operation of the HVAC system is cooling, even in winter. 

Therefore, increasing the insulation thickness will lead to higher cooling loads in winter months, 

which more than offsets any reductions in the cooling load in the summer months [62]. For example, 

If the optimal insulation thickness increases 1𝑐𝑚 (10% of the allowable range), the annual cooling 

loads increase 33 (𝐺𝐽), 11.35 (𝐺𝐽), 21 (𝐺𝐽) and 16 (𝐺𝐽) for Brisbane, Darwin, Hobart and 

Melbourne, respectively, while the heating loads decrease only 3.3 (𝐺𝐽) for both Hobart and 

Melbourne. The optimum windows and overhangs values depend on city and building direction 

because of the trade-off between lighting, cooling and heating loads. These results can also be used 

to compute the optimal values for window-to-wall ratio. For example, Melbourne has window-to-

wall ratios (excluding plenum) of 27.7%, 32.7%, 37.2% and 31.8% for the East, North, South and 
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West building faces, respectively. The minimum and maximum were selected for heating and cooling 

set-points for all cities, respectively. This is clearly expected when the building energy consumption 

is only minimised. It should be noted that Table 7 shows optimisation solutions with decimal points 

which are important in terms of solutions quality of optimisation algorithms but it might be 

impractical for some variables in buildings design. For example, the heating/cooling set points are 

likely be rounded to their nearest integer in buildings design. 

From an energy point of view, the difference between optimised objective functions obtained by 

ACOR (e.g. 642.56 𝑀𝐽/𝑚2 (Brisbane)) and PSO-HJ (e.g. 642.74 𝑀𝐽/𝑚2 (Brisbane)) are small. As can 

be seen in table 7, despite of slight differences between optimised objective functions, significantly 

different sets of parameters have been obtained by each algorithm, showing that the building 

objective function is very multi-modal. This fact provides building designers with more options in 

designing low energy buildings. 

In real world optimisation problems, it is very likely that few optimisation runs will be 

utilised due to the high computational cost. Therefore, an algorithm which leads to good 

solutions consistently is preferable. A low mean value with a small spread or variability in 

results suggests a more reliable algorithm in finding good solutions in any single run. Box–

Whisker (BW) plots display the distribution of optimisation results of annual energy 

consumption (𝐌𝐉/𝐦𝟐) for each city, based on ten runs. Comparing the median values in Figure 

4 shows that ACOR (2) and ACOR (1) perform the best for all cites, respectively. Although 

the median value of ACOR (1) is very close to ACOR (2), it has a larger variability than the 

ACOR (2) which makes ACOR (1) less reliable than ACOR (2). In contrast to ACOR, in all 

cites the spread of the optimisation results in NM is much larger than others. In addition, the 

median values of NM are also greater than other algorithms except for Darwin which PSOIW 
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is highest. Apart from NM, the spread of the optimisation results in PSO-HJ for Brisbane and 

Hobart is larger than others.   

Figure 4: Algorithm comparison with Box-Whisker plots for 10 runs; a) Brisbane b) Darwin c) Hobart 

d) Melbourne 

The Wilcoxon rank-sum test was applied to understand the statistical significance of the differences 

in the algorithms’ performance. The Wilcoxon rank-sum is a non-parametric statistical hypothesis 

test used to understand the probability that the difference between two groups (here two 

algorithms) is significant. In this test, low 𝑝-values indicate a low probability that the results were 

obtained by random chance while high 𝑝-values indicate a significant probability that there is no 

difference between the algorithm performances. Table 8 shows that for all cities the differences 

between both ACOR algorithms and NM, PSO-HJ as well as PSOIW are very significant. There is, 

however, no significant difference between ACOR (2) and ACOR (1). 

Another important metric for optimisation algorithms is the convergence rate. In building 

optimisation problems, the evaluation of objective function is time-consuming. And it is therefore 

crucial that the number of function evaluations is kept to a minimum. Comparing convergence speed 

of optimisation algorithms is particularly important when the overall performance is very close in 

terms of the objective value.  

Figure 5 shows an example of the optimisation run (for a solution close to the median) for Brisbane. 

As can be seen, both ACOR (1) and ACOR (2) converge to their final solutions much faster than other 

metaheuristic algorithms. In early iterations, NM performance is better than PSOIW and PSO-HJ and 

quickly converges to a solution. However, its solution is quite far from the best found solution. It can 

also be seen in the hybrid PSO-HJ algorithm, the PSO stopped after 3000 building simulations and 

then HJ refined the PSO results. The overall convergence speed of optimisation algorithms after ten 

runs is shown in the boxplots in Figures 6 and 7.   
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Figure 6 compares the convergence speed in the final stages of optimisation when 

algorithms converge to a solution very close to the final (e.g. within 0.1%) for Brisbane and 

Darwin. As can be seen, NM produced highly inconsistent results. In the PSO-HJ results, the 

solutions were found when HJ algorithm started refining PSO solutions (after 3000 iterations). 

A comparison of median values shows that both ACOR (1) and ACOR (2) are between two to 

four and half times faster than NM, PSOIW and PSO-HJ. Figure 7 compares the convergence 

speed in the initial optimisation stages when algorithms converge to a solution close to the 

optimal (e.g. within in 1%) for Hobart and Melbourne. Both ACOR algorithms showed slightly 

faster convergence rates than NM and much faster performance than PSOIW and PSO-HJ. A 

comparison of median values shows that ACOR (1) is almost seven times faster than PSO-HJ 

in Melbourne, and although NM has a potentially fast convergence rate, this rate is inconsistent 

and the solutions found have significantly higher energy consumption than the ACOR 

solutions. 

Figure 6. Number of building simulations required for each algorithm to converge to within 

𝟎. 𝟏% of the final solution, for a) Brisbane and b) Darwin 

Figure 8. Building annual energy consumption for Scenario A, B, and after optimisation 

Figure 8 shows the building annual energy consumption and the breakdown of energy 

consumption for Scenario A, B, and after optimisation. Figure 8 also shows that cooling loads 

in Scenario B respect to Scenario A reduced by 48.4%, 39.5%, 62.6% and 61.1% for Brisbane, 

Darwin, Hobart and Melbourne, respectively. 

After applying simulation-based optimisation, the annual energy consumption (compared to 

Scenario B) was reduced by 13.9%, 12.9%, 12.9% and 11.47% for Brisbane, Darwin, Hobart and 

Melbourne, respectively. Comparison of energy breakdown between Scenario B and optimised 

building shows that optimisation has significantly reduced the fan and cooling loads (fan energy 

consumption fell 53.45%, 43.37%, 61.32% and 53.22% for Brisbane, Darwin, Hobart and 
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Melbourne, respectively). The optimised building design in Darwin saw the maximum fan energy 

reduction by 34.65 MJ/m2. More importantly, cooling loads, which have significant impacts on the 

building peak load, were reduced by 35.7%, 24.9%, 52.03% and 39.5% for Brisbane, Darwin, 

Hobart and Melbourne, respectively. Darwin and Hobart experienced the maximum and minimum 

cooling load reductions of 75.92 MJ/m2 and 42.79 MJ/m2, respectively. It should be noted that 

despite the use of daylighting control, lighting loads almost remain constant between Scenario B and 

the optimised result. Since minimising the cooling and lighting loads are conflicting objectives, it is 

noteworthy that the optimisation algorithm prioritises reduction of the cooling loads, which isn’t 

surprising in Australia (where cooling loads are typically high). Since the optimisation seeks the best 

balance between the various building loads, it is highly likely that an attempt to further decrease the 

lighting or cooling load would lead to a corresponding increase of equal or greater magnitude in the 

other. 

5 Conclusion and Future Work 

In this study ACOR algorithm developed for solving building optimisation problems and was applied 

to optimise fifteen variables in a typical commercial building in four different climates in Australia. A 

comparison between ACOR and three benchmark algorithms, NM, PSOIW and PSO-HJ, established 

the supremacy of ACOR in solving BOPs. All algorithms found good solutions. However, the two 

different parameter settings for ACOR (ACOR (1) and ACOR (2)) found results which are closer to 

global optimum than PSOIW and PSO-HJ. In terms of consistency (spread of results), ACOR (2) 

showed less variation in results and was by far more consistent than other algorithms. Importantly, 

both ACOR (1) and ACOR (2) converged much faster to their final solutions than the PSOIW and PSO-

HJ. Indeed, since computational cost is a key issue limiting BOP practicality, this represents a 

significant result. Wilcoxon rank-sum test confirmed that the superior performance of ACOR over 

the two other algorithms was statistically significant. Overall, ACOR (2) is recommended for solving 
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BOPs due to finding more precise solutions, greater consistency in results and a fast convergence 

rate.  

This paper also highlights the importance of using simulation-based optimisation for commercial 

buildings in Australia. The results show that building optimisation can achieve energy reductions of 

at least 11.47% and up to 13.9%, even after implementing the energy saving measures of Scenario 

B. This reduction was achieved largely by reducing the cooling load without significantly altering the 

lighting requirements (see Figure 8). Applying a simulation-based optimisation on an Australian 

typical commercial building identifies the potential energy saving solutions, provides a better 

understanding of optimal values of design variables, and help building designers set up future 

building codes to design high performance buildings in Australia.  

In this paper, it was assumed that building input parameters are deterministic (or perfectly known). 

However, in real building problems especially at the early stages of building design, parameters are 

often highly uncertain (e.g. uncertainties in thermophysical properties or building user behaviour). 

These uncertainties are likely to cause changes in the building optimised design. Therefore, future 

studies will consider uncertainties during the optimisation process to select a reasonable 

compromise between the expected energy consumption and the robustness to uncertainty, 

potentially using multi-objective approaches. 

In addition, single-objective optimisation problem was considered in this paper (i.e. annual energy 

consumption), while other objectives have been not been considered, e.g. thermal comfort, which 

will be the subject of future studies. 
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Figure 1: Solution archive for ACOR (adapted from [16]) 

 

 

 

Figure 2: Ten-storey building Type A (ABCB) [48, 49] 
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Figure 3: Annual energy consumption for building Type A scenarios A and B, and the average 

state energy consumption for commercial office buildings [60] 

 

 
Figure 4a 

 
Figure 4b 
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Figure 5: Convergence speed for the solution close to median in Brisbane 

 

 
Figure 6a 

 
 Figure 6b 

Figure 6. Number of building simulations required for each algorithm to converge to within 0.1% of 

the final solution, for a) Brisbane and b) Darwin 
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Figure 7a 

 
Figure 7b 

 

Figure 7. Number of building simulations required for each algorithm to converge to within 𝟏% 

of the final solution, for a) Hobart and b) Melbourne 

 

Figure 8. Building annual energy consumption for Scenario A, B, and after optimisation 
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Table 1. Building Type A construction details [48, 49] 

 
Construction Materials 

Overall U-Value 
(W/m2-K) 

Wall 
200 mm heavy weight concrete R1.5 batts, 10mm 

plasterboard (absorption coefficient (AC) = 0.6) 
0.557 

Roof 
Metal deck, air gap, 150mm HW concrete, roof 

space, R2.0 batts, 13mm acoustic tiles (AC= 0.6) 
0.231 

Floors 175 mm concrete, carpet 2.7 cm 1.351 

Windows 
6 mm clear glass 

 (SHGC = 0.818, VT= 0.88) 
5.89 

Window to 
wall ratio  

38 %  

 

Table 2. Building geometry details and assumptions used in building modelling 

Parameters Values 

Total floor area (m2) 9985.6 

Geometry (m) 31.6 × 31.6 

Number of floors 10 

Floor to floor height (m) 3.6 

Floor to ceiling height (m) 2.7 

Lighting load 15 W/m2 

Equipment load 15 W/m2 

Lifts and auxiliary service 
equipment 

1 W/m2 

Occupancy 0.1 Person/m2 

Temperature set-point  20-24 °C 

Temperature set-back 28 °C (18pm-7am, business days) 

Infiltration 
1 ACH outside HVAC operating hours, 0 ACH during 

HVAC hours 

HVAC system 
VAV system, water cooled AC, Gas boiler, COP=3.57 

(no heat recovery and economy cycle) 
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Table 3.Optimisation variables and their ranges 

Variables Description Variable Range 

X1 Roof emissivity  [0.5-0.9] 

X2 Roof solar absorptance  [0.3-0.85] 

X3 Wall insulation (m) [0.01-0.1] 

X4 Wall solar absorptance [0.3-0.9] 

X5 East window height (m) [0.5-1.5] 

X6 North window height (m) [0.5-1.5] 

X7 South window height (m) [0.5-1.5] 

X8 West window height (m) [0.5-1.5] 

X9 East overhang depth (m) [0-1] 

X10 North overhang depth (m) [0-1] 

X11 South overhang depth (m) [0-1] 

X12 West overhang depth (m) [0-1] 

X13 Heating setpoint (°C) [18-22] 

X14 Cooling setpoint (°C) [23-27] 

X15 Building orientations (degree) [0-45] 

 

Table 4.Parameters used for NM 

NM parameters  

Accuracy 0.01 

Step size factor 0.1 

Block restart check 10 

Modify stopping criterion TRUE 

 

Table 5.Parameters used for PSOIW and PSO-HJ 

 PSOIW PSO-HJ 

Topology Von Neumann Von Neumann 

Number of particles 100 100 

Cognitive acceleration 2.05 2.05 

Social acceleration 2.05 2.05 

Constriction gain - 1 

Max velocity gain 0.2 0.2 

Initial inertia weight 1.0 - 

Final inertia weight 0 - 

Mesh size divider - 2 

Initial mesh size exponent - 0 

Mesh size exponent increment - 1 

Number of step reductions - 4 
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Table 6.Parameters used for ACOR (1) and ACOR (2) 

 ACOR (1) ACOR (2) 

No. of new solutions used in 
each iteration (ants) 

5 5 

𝑞 parameter 0.0001 0.1 

Speed of convergence (𝜉) 0.85 0.85 

Archive size 50 50 

 

Table 7.Optimisation results, best solution of each algorithm 

 Algorithm 

Objective 
Function 

(MJ/m2) 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 

Brisbane 

NM 644.21 0.66 0.49 0.01 0.30 0.75 0.75 0.86 0.74 0.57 0.94 0.54 0.88 21.58 27.00 19.65 

PSOIW 644.17 0.69 0.33 0.01 0.30 0.78 0.87 1.04 0.68 0.71 0.62 0.63 0.95 20.08 26.98 4.77 

PSO-HJ 642.74 0.90 0.30 0.01 0.30 0.75 0.79 0.93 0.75 1.00 0.60 0.58 1.00 18.00 27.00 2.60 

ACOR (1) 642.56 0.90 0.30 0.01 0.30 0.75 0.75 0.95 0.75 1.00 0.65 0.72 1.00 18.43 26.99 10.00 

ACOR(2) 642.74 0.90 0.30 0.01 0.30 0.86 0.83 0.94 0.75 0.74 0.71 0.71 1.00 19.04 26.99 11.66 

Darwin 

NM 780.11 0.69 0.30 0.01 0.30 0.75 0.70 0.88 0.74 1.00 0.78 0.75 0.97 18.64 27.00 15.29 

PSOIW 781.32 0.84 0.31 0.01 0.30 0.69 0.67 0.93 0.74 1.00 0.89 0.71 0.92 21.31 26.98 36.72 

PSO-HJ 780.11 0.90 0.30 0.01 0.30 0.75 1.00 0.75 0.75 1.00 0.79 0.57 1.00 20.50 27.00 13.44 

ACOR (1) 779.25 0.90 0.30 0.01 0.30 0.73 0.75 0.91 0.75 1.00 1.00 0.69 1.00 21.92 26.99 2.01 

ACOR(2) 779.24 0.90 0.30 0.01 0.30 0.72 0.75 0.90 0.75 1.00 1.00 0.68 1.00 21.18 26.99 0.02 

Hobart 

NM 547.10 0.90 0.39 0.01 0.30 1.00 0.67 1.36 0.88 0.76 0.53 0.60 0.76 18.02 27.00 18.28 

PSOIW 547.10 0.74 0.48 0.01 0.30 1.11 0.92 1.16 0.93 0.81 0.76 0.47 0.77 18. 00 27.00 17.95 

PSO-HJ 546.13 0.90 0.30 0.01 0.30 0.95 1.07 1.34 1.02 0.78 0.80 0.52 0.77 18.00 27.00 7.25 

ACOR (1) 545.92 0.90 0.30 0.01 0.30 0.75 1.02 1.26 0.92 1.00 0.77 0.25 0.70 18.00 27.00 0.00 
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ACOR(2) 545.95 0.90 0.30 0.01 0.30 0.89 1.05 1.27 0.92 0.77 0.80 0.28 0.77 18.00 27.00 8.85 

Melbourn

e 

NM 577.19 0.67 0.62 0.01 0.30 0.74 0.89 0.96 0.79 0.56 0.56 0.59 0.69 18.57 26.99 4.84 

PSOIW 576.44 0.83 0.37 0.01 0.30 0.86 0.80 1.03 0.82 0.70 0.65 0.45 0.71 18.20 27.00 13.27 

PSO-HJ 575.82 0.90 0.30 0.01 0.30 0.78 0.75 0.99 0.75 0.68 1.00 0.28 1.00 18.50 27.00 9.60 

ACOR (1) 575.58 0.89 0.30 0.01 0.30 0.75 0.88 1.01 0.86 1.00 0.76 0.39 0.74 18.30 27.00 0.00 

ACOR(2) 575.64 0.90 0.30 0.01 0.30 0.88 0.87 0.99 0.75 0.76 0.75 0.38 1.00 18.30 27.00 19.70 

 

Table 8.Wilcoxon rank-sum test results. Bold numbers indicate 𝒑-values that are below the 

conventional 0.05 significance level 

 
Brisbane 
(P-value) 

Darwin 
(P-value) 

Hobart 
(P-value) 

Melbourne 
(P-value) 

ACOR (2) VS NM (0.0001) (0.0001) (0.0001) (0.0001) 

ACOR (2) VS PSOIW (0.0001) (0.0001) (0.0001) (0.0001) 

ACOR (2)  VS PSO-HJ (0.0022) (0.0001) (0.0001) (0.0003) 

ACOR (2) VS ACOR (1) (0.2730) (0.1405) (0.1405) (0.4274) 

ACOR (1) VS NM (0.0002) (0.0001) (0.0001) (0.0001) 

ACOR (1) VS PSOIW (0.0002) (0.0001) (0.0001) (0.0003) 

ACOR (1)  VS PSO-HJ (0.0173) (0.0001) (0.0022) (0.0173) 

 


