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a b s t r a c t

Ant colony optimization (ACO) is a population-based metaheuristic for solving hard combinatorial
optimization problems. Many studies are dedicated to accelerating ACO by parallel hardware, especially
by graphics processing units (GPUs). However, due to the irregular (random) pattern of ACO algorithms
in data access and control flow, the performance of GPU-based approaches is constrained by hardware
limitations. CPU-based SIMD computing for ACOs is rarely investigated in previous literatures, and how
well multicore-SIMD CPU-based parallel ACOs could perform remains unknown. In this paper, we present
and evaluate a model of vector parallel ACO for multi-core SIMD CPU architecture. In the proposed
model, each ant is mapped with a CPU core and the tour construction of each ant is accelerated by
vector instructions. Furthermore, based on the model, we propose a new fitness proportionate selection
approach named Vector-based Roulette Wheel (VRW) in the tour construction stage. In this approach,
the fitness values are grouped into SIMD lanes and the prefix sum is computed in vector-parallel mode.
The proposed algorithm is tested on standard TSP instances ranging from 198 to 4461 cities and shows a
speedup factor of 57.8x compared to the single-threadedCPU counterpart.More significantly,we compare
our approach with high performance GPU-based ACOs, and the results demonstrate the strong potential
of CPU-based parallel ACOs.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Solving optimization problems in the real world is complex
and time consuming for central processing units (CPUs), especially
for large-scale problems [1]. The modeling of these problems is
also problem-dependent. Metaheuristics are efficient methods to
obtain satisfactory resolution (an approximate optimum) in a rea-
sonable time [2] and to provide a generic algorithm framework that
can be applied in various problems with fewmodifications [3]. Ant
Colony Optimization (ACO) is a population-based metaheuristic
inspired by the social behavior of ants [4]. Artificial ants construct
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solutions independently and communicate with each other by a
stigmergymechanism [5]. This process is executed iteratively until
a termination criterion is reached. The most significant feature of
ACO is positive feedback that benefits from the pheromone left by
ants that can guide the solution construction process. This meta-
heuristic has been used to solve NP-hard problems, such as the
traveling salesman problem (TSP) and the quadratic assignment
problem (QAP) [6,7].

In recent years, new types of hardware that deliver massive
amounts of parallel processing power, such as Cell/BE, FPGA, and
graphics processing units (GPUs), have become available. Among
these types of hardware, GPUs are one of the most remarkable
accelerators that could provide great computing power at a low
cost. GPU-accelerated parallel ACO algorithms have become a topic
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of considerable interest [8–11]. The computational efficiency of the
ACO algorithms is significantly improved by the use of GPUs.

However, existing GPU-based parallel ACOs face at least two
problems. Firstly, the GPU-based ACOs show moderate speedups
against CPU-based sequential ACOs when considering that the
theoretical peak performance of GPUs is considerably higher than
that of a single CPU thread. Secondly, the GPU-based ACOs are
highly depended on the on-chip memory which is a very limited
resource [9,10], thus the problem size to be solved is constrained.

Recent CPU architectures have significantmodifications leading
to high-performance computing capabilities. First, due to instruc-
tion level parallelism (ILP) walls and frequency walls, the perfor-
mance of CPUs is enhanced by the multi-core scheme. Second,
modern CPU architecture increases stress on single instruction
multiple data (SIMD) vector instruction extensions [12]. Regular
algorithms have taken advantage of current CPU architecture, such
as sorting [13], stencil computation [14] and matrix multiplica-
tion [15].

Unfortunately, little attention has been paid to the modeling
of parallel ACO to be adapted to CPU-based SIMD architecture.
Although the existing GPU-based ACO model may be theoretically
applicable on the multicore-SIMD CPU architecture, the perfor-
mance is hardly guaranteed for different characteristics of the
parallel architectures [16], computational features of the ACO al-
gorithm [17] and discrepancies of the compiler optimizations [18].
The optimized implementation of multicore-SIMD CPU version
ACO is still a technique challenge.

The oral communication [19] inMETA’14 proposed an approach
of vectorization for ACO algorithm on the GPU architecture. But
whether it is suitable for the multicore-SIMD CPU architecture is
unknown and how well CPU-based parallel ACOs could perform
when compared with GPU-based methods remains unclear.

This paper presents an idea to accelerate a fully developed
parallel ACO for the TSP onmulti-core SIMDCPUs. In our algorithm,
critical stages, tour construction and pheromone update are paral-
lelized and optimized. Our major contributions are as follows:

1. To the best of our knowledge, this is the first parallel ACO
algorithm exploiting both task-level and vector-level paral-
lelism on multicore-SIMD CPUs.

2. We present a new model of vector parallel ACO on
multicore-SIMD CPU, which extends the general task par-
allel model widely being used.

3. In the tour construction stage, we design a new fit-
ness proportionate selection approach named Vector-base
Roulette Wheel (VRW) to improve vector-level parallelism
on multicore-SIMD CPUs.

4. We evaluate our algorithm with the standard TSPLIB prob-
lems ranging from 198 to 4461 cities and obtain amaximum
speedup factor of 57.8x compared to the standard CPU se-
quential version.

5. More importantly, we compare our algorithmwith previous
high performance GPU-based data parallel ACOs that are
already proposed in literature [8–11]. The results indicate
the strong potential of multicore-SIMD CPU-based parallel
ACOs.

The remainder of this paper is organized as follows. We first
briefly introduce the ACO for the TSP. Related studies are discussed
in Section 2. Then, we present our approaches of parallel ACO on
multicore-SIMD CPUs in Section 3. Our experimental methodology
is outlined in Section 4, and we describe the performance evalu-
ation of our algorithm in this section. Finally, we summarize our
findings and conclude with suggestions for future work.

2. Background

2.1. Ant colony optimization for the TSP

The TSP is an NP-hard problem in combinatorial optimization
and is important in operations research and theoretical computer
science. The objective of the TSP is to find a minimum-weight
Hamilton cycle in a complete weighted directed graph G =

(V , A, d), where V = 1, 2, . . . , n is a set of vertices (cities), A =

{(i, j)|(i, j)ϵV × V } is the set of arcs (paths), and d : A → N is
a function assigning a weight or distance (positive integer) dij to
every arc (i, j).

The TSP is solved by Dorigo et al. [20] using the ACO, which
uses many artificial ants performing parallel searches on a graph.
Each ant moves independently on the graph until it travels to all
of the cities on the graph. This process is typically called the tour
construction phase, and then, the process provides a solution. To
obtain a better solution, each ant strengthens the pheromones on
its path to guide other ants. The ants stochastically select the next
city to visit based on heuristic information obtained from inter-
city distances and the net pheromone trail. However, a process of
pheromone evaporation is also applied to avoid falling into a local
optimum solution.

Algorithm 1 presents the sequential code framework for the
ACO. First, all data structures for the TSP problem, including visited
city list and city distance, are initialized. Next, in the tour construc-
tion stage, m ants travel to n cities sequentially. Then, each tour
could be improved by a local search process. In the pheromone
update stage, each ant deposits pheromone on n paths of its travel
separately one by one. These stages are performed iteratively until
the termination criterion is reached.

Algorithm 1 Sequential AS Pseudo-code for the TSP
1: InitializeData();
2: repeat
3: TourConstruction();
4: LocalSearch(); // Optional
5: PheromoneUpdate();
6: until Termination_criterion()
7: end

TheMax–MinAnt System (MMAS) [21] is commonly recognized
as one of the best performing ACO algorithms at the present
time. The main mechanisms and memory structures of MMAS
are derived from AS. There are two key improvements over AS
In MMAS. (1) To strengthen exploitation of the search history,
MMAS only allows one ant (global best or iteration best) to update
the pheromone trails after each iteration; (2) to avoid premature
convergence of the search, a pheromone strength control mecha-
nism is applied to MMAS in which each pheromone trail is limited
between τmin and τmax. For better readability, we refer the reader
to [20,21] containing detailed information on this subject.

2.2. Multi-core SIMD CPU and OpenCL Programming Model

For the purpose of understanding our work, a brief description
of multi-core SIMD CPU architecture and its parallel programming
model is required. CPUs with x86 architecture support a set of
SIMD instructions called Streaming SIMD Extensions (SSEs) in Pen-
tium III by Intel. With these instructions, the system can perform
the operations on the vector data elements in many ways, includ-
ing operating on many elements simultaneously. This flexibility
lets vector designs use slow but wide execution units to achieve
high performance at low power [12]. In 2011, Intel released Sandy
Bridge micro-architecture that supports a new set of instructions
known as Advanced Vector eXtensions (AVXs) [22], an enhanced
version of the SSE instructions. In theAVX instruction set, thewidth
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of the SIMD registers is extended from 128-bit to 256-bit. Hence,
an AVX instruction set is able to process twice the amount of data
that the SSE instruction set is able to process.

Open Computing Language (OpenCL) is an open standard for
general-purpose parallel programming across CPUs, GPUs and
other processors, providing software developers with portable and
efficient access to the power of these heterogeneous processing
platforms. In OpenCL, multi-core CPUs and GPUs are defined in
a unified model, and they are all considered as devices. Fig. 1
illustrates that an OpenCL device is divided into one or more
compute units (CUs), which are further divided into one or more
processing elements (PEs). Computations on a device occur within
the processing elements. The globalmemory and constantmemory
together represent the off-chip memory of compute devices. Gen-
erally, a CPU in OpenCL architecture could also be called a host. The
OpenCL application submits commands from the host to execute
computations on the PEs within a device.

At a high level, multi-core SIMD CPUs share similarities with
GPUs. Therefore, CPUs and GPUs share the same terms in OpenCL.
For efficient comprehension of our work and the related GPU-
based parallel ACOs, we summarize these terms in Table 1.

2.3. Related works

Parallelism is as an effective method for metaheuristics to re-
duce the exploration time and improve the quality of the solutions
provided [24,25]. Moreover, ACOs are based on swarm intelligence
theory [26], that is, a collection of identical ants work collabora-
tively to search for an optimal solution. ACOs are also typical bioin-
spired algorithms for that they are based on the natural process
of ant foraging. Because such behaviors of ants are well suited to
parallel or distributed processing, many studies are dedicated to
improving the performance by parallel computing technology [27].
In terms of efficiency, Bullnheimer et al. [28] accelerate the ACO
algorithm by distributing ants to processing elements while they
conform to the original algorithm. In terms of improving quality,
Stützle [29] has researched the strategy of using parallel inde-
pendent runs. In Stützle’s work, multiple ant colonies could be
executing on processors and communicate by the timely exchange
of good solutions or pheromone trials. These approaches are often
implemented on processors with shared memory and distributed
through a message passing interface (MPI).

From the architecture point of view, we review literatures on
parallel ACOs by two types of parallel processor: multi-core and
many-core.

2.3.1. Multi-core CPU-based parallel ACOs
Bui et al. [30] present a parallel ant-based optimization (a

variant of ACO) algorithm on an eight-core CPU using shared
memory strategies. Their approach is up to six times faster than
the sequential approach for the Max-Clique problem. Tsutsui and
Fujimoto [31] propose a parallel ACO and evaluate this paral-
lel ACO on a four-core CPU. They compare three parallel ACO
models and conclude that the asynchronous parallel model is the
most promising model, with speedups ranging from 2.7 to 5.1. Li
et al. [32] implement a parallel ACO on a dual-core CPU using a
Thread Building Block (TBB). They achieve a speedup of 1.72 in
solving TSP instances with city numbers up to 500. With similar
ideas, Gao et al. [33] apply two multi-threading implementations
to solve the Target Assignment Problem with ACO. OpenMP and
TBB are selected in their experimental analysis. They obtain nearly
linear speedupswith 100 targets andprove that the approachusing
OpenMP outperforms the approach using TBB. Zhang et al. [34] use
the Parallel Pattern Library to implement an Ant System algorithm.
Their experiments are performed on a quad-core CPU and demon-
strate that the overall efficiency of the algorithm is improved.

More recently, Kugu et al. [35] aim to present the performance
increase of parallel ACOs on multi-core CPUs. They implement
the Ant Colony System and the Rank-Based Ant System using the
Java thread programming approach. They report speedups ranging
from 6.11 to 13.65 in an 8-thread configuration. Zhang et al. [36]
propose a parallel ant system using OpenMP to make full use of
the computing power of amulti-core CPU. Their algorithm is based
on the multiple ant colony approach for solving the TSP. Their
experimental results show that both the efficiency and solution
quality are improved by their approach.

This type of parallel ACOs is based on the task parallel ACO
model (TPAM). The main concept of the TPAM is mapping each
ant to a thread. Because of the inherent parallel nature of the ACO,
threads could execute concurrently in the tour construction. This
concurrent execution could be implemented on a multi-core CPU
byusingmulti-threading technology. However, the performance of
this approach is constrained by the number of CPU cores, which is
typically 4 or 8, resulting in the speedup values that do not typically
surpass 10.

2.3.2. Many-core GPU-based parallel ACOs
The architecture of GPUs is considered a typical variant of SIMD

architecture in a recent classification [12]. The existing parallel
approaches on GPUs are also related to our work. Because GPUs
could deliver higher peak computational throughput than multi-
core CPUs and are inexpensive, researchers are more interested in
parallelizing the ACO algorithm on GPUs than on multi-core CPUs.

Researching GPU-based Parallel ACOs started as the emergence
of the programmable shader. Catala et al. [37] andWang et al. [38]
research the GPU implementation of ACO using vertex processors
and fragment processors. The ecosystem of CUDA has been grow-
ing rapidly since 2009 with the development of general-purpose
computing on graphics processing units (GPGPUs) and with the
ease of programming and the need for computing power. Since
then, most ACO algorithms have been developed with CUDA [39–
42].

More systematic studies on GPU-based ACO have been pub-
lished since 2013. Delévacq et al. [9] propose effective paralleliza-
tion strategies for the ACO metaheuristic on a GPU. They associate
each ant with a thread-block, and parallelism is exploited through
the computation of the state transition rule. They report speedups
as high as 19.47with a solution quality similar to the solution qual-
ity of the original sequential implementation. Their results also
show low speedups of up to only 5.84 by implementing TPAM on
GPU. Cecilia et al. [10,43] extend the taxonomy hardware-parallel
ACOs proposed by Pedemonte et al. [27]. In their paper, they first
present the concept of the task-based parallel model and the data-
based parallel model for ACOs and implement them using CUDA.
Their data parallel approach is based on the idea that a thread-
block represents a queen ant, and each thread within a block is
associated with cities. They provide experimental results to prove
that the data-based parallel model is better fitted to GPUs than the
task-based parallel model.

Also more addressing implementation strategies for higher ef-
ficiency, Uchida et al. [8] implement ACO for the TSP using CUDA
with the consideration of many programming issues in the GPU
architecture, including coalesced access of global memory and
sharedmemory bank conflicts. In addition, these authors present a
method called Stochastic Trial to avoid the prefix sum calculation
as much as possible. Dawson et al. [11] extend the data parallel
approach of Cecilia et al. [10] and Delévacq et al. [9]. They propose
a new parallel implementation of roulette wheel selection called
Double-Spin Roulette that significantly reduces the running time
of tour construction.

Recently, Llanes et al. [44] present a hybrid parallel ACO on
heterogeneous clusters. This approach mainly accelerates ACO by
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Fig. 1. OpenCL compute device architecture [23].

Table 1
Conversion from terms used in OpenCL to official NVIDIA/CUDA and Intel Haswell.

OpenCL term Intel Haswell term NVIDIA/CUDA term

CU Logical core/Vector unit Streaming multi-processor (SM)
PE Vector lane Streaming processor (SP)
Global memory L3 cache/host memory GPU memory
Local memory L1/L2 cache Shared memory
Private memory Registers Local memory
Work-group Work-group Thread block
Work-item Work-item CUDA thread

GPUs, and CPUs are used as performance monitoring via OpenMP
threads. Skinderowicz [45] propose a parallel Ant Colony System
(ACS) for GPUs, which achieves a speedup up to 24.29x.

This type of parallel ACOs is based on the data parallel ACO
model (DPAM). The main concept of the DPAM is to associate each
ant with a group of threads with shared memory, for example, a
CUDA thread block. Furthermore, by assigning each thread to one
or more cities, threads in a block could compute the state tran-
sition rule cooperatively, thus enhancing data-level parallelism.
Additionally, because the on-chip shared memory is able to store
the data structures of an ant, the latency of uncoalesced memory
access manner in tour construction is decreased.

2.4. Problems and motivations

The previous works intensively investigate parallel strategies
of implementation of ACOs on GPUs and demonstrate the more
promising efficiency on GPUs than on multi-core CPUs. However,
there are still several major problems as follow.

1. Problem1. The theoretical peak performance of aGPU is sev-
eral hundred times higher than that of a CPU of similar price
and/or similar level. However, the GPU-based ACO speedups
are only reach about 30x [8–10]. This demonstrates that
the hardware utilization ratio of GPU-based ACO is low.
The reason mainly comes from the unregular (random) and

divergence nature of ACO algorithm. Therefore, multi-core
SIMD CPU is a potential solution of the problem, which is
worthy of exploration.

2. Problem 2. The existing CPU-based parallel ACOs is com-
monly accelerated by multi-core in literatures [31,35,36]
with task-parallel model, and the CPU vector units are ig-
nored. Therefore, the vector-parallel approach of ACO on
SIMD CPU should be investigated. Whether the vector-
parallel approach is suitable for the multicore-SIMD CPU
architecture is unknown and how well CPU-based parallel
ACOs could performwhen comparedwith GPU-basedmeth-
ods remains unclear.

3. Problem3. Furthermore, the performance ofGPU-basedpar-
allel ACOs is limited by shared-memory resources [9], while
CPU-based parallel ACOs have no such limitation and could
potentially deal with larger scale TSP problems.

In order to address these problems, the motivations of our
research on CPU-based ACO are as follow.

1. Aiming at problem 1, although we have done a previ-
ous work on the optimization of GPU-based data-parallel
ACO [46], the speedups are still below 50x with our efforts.
Therefore, a new parallel ACO model should be investi-
gated, which can exploit both task-parallelism and data-
parallelism. And themodel should also be suitable formulti-
core SIMD CPU to achieve better hardware utilization.
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2. Aiming at problem 2, a new parallel method should be
designed for the most time-consuming part of the ACO
algorithm, that is the roulette-wheel selection process. We
propose an approach of vector-level parallelism for the
problem.

3. Aiming at problem 3, the utilization of CPU memory ar-
chitecture is an additional benefit of the new parallel ACO
model.

3. Parallel ACOs on multi-core SIMD CPUs

In this section, we review the previous parallel designs for the
ACO algorithm and then present our approaches orienting multi-
core SIMD CPUs. For tour construction, based on our analysis on
two previous GPU-based parallel approaches, we present our CPU-
based SIMD algorithm. For the pheromone update, we introduce
our implementation.

3.1. Our proposed parallel ACO approaches

The DPAM is suitable for GPU architecture, but we should re-
consider it for a CPU-based SIMD. There are two issues of adapting
DPAM to multicore-SIMD CPUs. The first issue is the data synchro-
nization overhead. In the data parallel approach, because the ant
data are shared between threads via sharedmemory, these threads
communicate through barrier synchronization points, resulting in
cross-module round trips that degrade performance [47]. Another
issue is that the explicit use of localmemory introduces amoderate
cost [47] because for CPU, all memory objects are cached by hard-
ware. In this section, we present several different multicore-SIMD
CPU designs for AS and MMAS, as applied to the TSP.

3.1.1. The vector parallel ACO models
We extend the TPAM to exploit vector-level parallelism in two

schemes named as Vectorized Task Parallel ACO Model (VTPAM)
and Vector Enhanced Task Parallel ACO Model (VETPAM) (Fig. 2).
The models are described as follows:

VTPAM (Fig. 2(a)): In this design, v ants (depending on the
vector instructionwidth) are grouped to run together. This groupof
working ants perform the vectorized task (VT). Each VT is associated
with a CU to exploit task level parallelism. Because each task in a VT
performs the same scalar instructions, they could be packed into
vector instructions, which exploit data-level parallelism on the
CPU-based SIMD architecture.With vector instructions, the data of
v ants could be processed simultaneously. Nevertheless, due to the
fact that the ACO algorithm diverges in the RW selection process,
the vectorization module of the compiler has to execute both code
path of an if-statement (or loop-statement) by masks (predicates).
Thus, the utilization of SIMD units could be reduced dramatically
because more instructions are generated.

VETPAM (Fig. 2(b)): In this model, each ant is mapped to a
thread, which is the same strategy as in TPAM. We use vectors to
accelerate the tour construction stage. The ant data is divided into
vector lanes to enhance vector-level parallelism. And the diverged
code is still executing sequentially to avoid masking-overhead.

In addition, the task-based coding style is more developer-
friendly than the data-based coding style, because themajor logical
flow of the program is close to the sequential version. The vector-
based approach could have three advantages over TPAM. First, we
could exploit the parallelismof vector registers and vector function
units. Second, since the ant travel is guided by a stochastic process,
the memory access pattern is unpredictable. Thus, the CPU cache
is a better fit for this type of random memory access. Third, the
reuse of data is transparently managed by hardware. Because the
cores in amulticore CPU share the L3 cache, the running ants could
benefit from hitting data in the cache. To ensure the effectiveness
of these advantages, we present the performance evaluation of the
proposed models on a multicore-SIMD CPU in Section 4.

3.1.2. System overview
A multicore-SIMD CPU based ACO is illustrated in Fig. 3, which

divides different operations in the ACO algorithm into several sep-
arate kernels for encapsulation. The host allocates memory region
for ACO structures and pass the pointers of these structures to the
device through kernel parameters, so data transfer is not needed
between them. Function of the kernels are described as follow:

Kernel(RNG): generate random numbers between 0 and 1 for
the roulette wheel selection procedure. This is a common func-
tional kernel for data preparation.

Kernel(CI): the choiceinfo matrix stores heuristic information,
which is calculated by the heuristic value times pheromone for
each edge ([τi,j]α[ηi,j]

β ). We associate each choiceinfo entry with
a work-item to execute on a process element of an SIMD CPU.

Kernel(TC): this kernel contains an iterative process, in which
each ant stochastically move to the next city according to the state
transition rule until all the cities are visited. Each ant is mapped to
a work-item or a work-group (coarse-grain or fine-grain strategy).
This kernel requires random numbers generated in RNG kernel.

Kernel(LS): performs local search for each ant’s tour to en-
hance exploitation. This kernel may require a lot of computation
time, however, is an important part of the state-of-the-art ACO
algorithm which augment solution quality largely. This kernel is
optional in ACO.

Kernel(PU): performs pheromone evaporation and pheromone
deposit. We use atomic operation to solve the conflicts when
several ants visit a same edge.

Kernel(DC): reset the tours of ants for the next iteration.
The kernels execute iteratively until termination criterion is

reached. The typical stop conditions are max execution time, max
iterations and convergence criterion. In this work, we focus on the
computational features of the ACO, sowe choosemax iterations for
the convenience of performance comparison with existing parallel
ACOs.

3.1.3. Memory management strategies
In this section, we propose ourmemorymanagement strategies

for CPU-based SIMD architecture. Additionally, the methods for
the GPU are given for comparison. There are two types of data
structures in the ACO. The first type is the city-related data, which
contain the distance matrix and pheromone matrix at n ∗ n in size,
where n is the number of cities. The data size increases dramat-
ically with an increasing number of cities. It is suitable to write
on global memory because of the limitation on the local memory
size. The second type of data is the ant data. Each ant has its own
private data to record the path and visitations or temporarily save
the probability array. These data have a size of m ∗ n, where m is
the number of ants.

Table 2 summarizes the ACO data distribution on GPU and CPU
memory. On GPUs, an ant data structure that is used frequently in
the tour construction could be saved on local memory to reduce
the overhead on data accessing to global memory. Typically, the
ant data structure is a one-dimensional array of size n, such as
the tabu list, city indices, city visitations and transfer probabilities.
On CPUs, all of the data structures except temporary variables
could be stored in the global memory. The accessing of these data
structures could be cached by hardware. Thus,we use the structure
of arrays (SOA) pattern,which is typicallymore cache-friendly than
the array of structures (AOS) [47].

On GPUs, the host initializes all of the data structures and then
copies them to the global memory. These data will be read to local
memory as a user-managed cache. On CPUs, because vector units
share the samememory space with scalar units, they could use the
host memory pointer directly.
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Fig. 2. The task-based parallel ACO model and its extensions: VTPAM (a) and VETPAM (b).

Table 2
Data distribution on GPU and CPU memory.

ACO data structure GPU memory CPU memory Data size

City distance Global Global n ∗ n
Pheromone information Global Global n ∗ n
Parameters Constant Constant –
Tabu list Global Global m ∗ n
City visitation Global Global m ∗ n
Tabu list (per ant) Local Not need n
City visitation (per ant) Local Not need n
Probability array (per ant) Local Not need n
Temporary variable Private Private –

3.2. The tour construction stage

3.2.1. The basic tour construction kernel
Algorithm 2 shows the pseudo code of the tour construction

kernel based on the TPAM. At the start Algorithm2, the ant identity
i is set to the globalwork-item identity and later used to access data
of the ant i. The main process of Algorithm 2 (from lines 3 to 25) is
the same as the original sequential algorithm.

In this kernel, each ant step is divided into two processes. First,
each ant loads the heuristic information for visiting city j from
current_city (see Algorithm 2, lines 4–13). The choice_info matrix
is calculated in kernel CI, as explained before. Second, base on the
heuristic information, each ant chooses next city to move to using
RW selection (see Algorithm 2, lines 15–24).

3.2.2. Compaction-based tour construction
The idea of this approach is to bypass the check of the visited

cities in the tour construction. Thus, the number of cities involved
for RW selection is compacted.We use a city index array to replace
the tabu list and city visitation array in the basic tour construction
algorithm.

Fig. 4 depicts our design. The city index array is initialized to an
ordered sequence of city identities, which is used to access the city
related heuristic information (choice_info in Algorithm 2). To be
clearly, we show several steps in an ant’s tour construction (Fig. 4).

Algorithm 2 The pseudo code of the basic task parallel tour con-
struction kernel.
1: for each i := 0 → m − 1 parallel do
2: ant[i].visited := {false};
3: for step := 1 → n − 1 do
4: current_city:=ant[i].tabu[step-1];
5: sum_prob:=0;
6: for j := 0 → n − 1 do
7: if ant[i].visited[j] then
8: ant[i].prob[j]:=0
9: else

10: probability:=choice_info[current_city][j];
11: ant[i].prob[j]:=probability;
12: sum_prob+=probability;
13: end if
14: end for

{Roulette Wheel Selection Process}
15: rand:=random(0, sum_prob);
16: probability:=0;
17: for k := 0 → n − 1 do
18: probability+=ant[i].prob[k];
19: if probability >= rand then
20: break;
21: end if
22: end for
23: ant[i].tabu[step]:=k;
24: ant[i].visited[k]:=true;
25: end for
26: end for
27: end

The private variable cursor represents an index of the candidate
city for selection, and increase by one after the ant moves to the
next city. In the first step, all n cities are collected for selection
computation in RW. Then, the selected city index is swapped with
the candidate city index. In step 2, the RWprocess only needs n−1
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Fig. 3. Flow chart of a multicore-SIMD CPU based ACO.

Fig. 4. Compaction-based tour construction.

cities for computation, because the first element of the city index
array is a visited city. In step 3, the number of cities for computation
also decrease by one as illustrated in Fig. 4. Consequently, the total

number of cities processed in RW is Σn
i=1i =

n(n+1)
2 , which is

approximately half of the basic version.

3.2.3. Vector-based roulette wheel process
In ACO algorithms, the roulette wheel selection is a key process

for parallelization. This process is generally recognized as themost
time consumingpart [8,10,11]. It is trivial to implement on a single-
threaded machine. However, efficiently parallelizing RW on many
core machines requires a considerable effort, for the reason that
RW is highly stochastic and contains divergence in control flow.
Several literatures have proposed parallel RW approaches on GPU
implementation, but it is still rarely investigated on multicore-
SIMD CPUs.

Our approach is based on the following definitions:

Definition 1. The addition scan operation takes an input array a of
n elements

[a0, a1, . . . , an−1],

and outputs

[s0, s1, . . . , sn−1],

where si =
∑i

j=0aj. The scan operator defined here is an inclusive
scan.
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Definition 2. The partial scan takes a sequence of element from the
array awhose index range is from x to ywhere x ≥ 0 and x < y < n.
It outputs an array s(x,y) in which s(x,y,i) =

∑i
j=xaj, where x ≤ i ≤ y.

Corollary 1. The partial scanned array could be processed to scanned
array by

s(x,y,i) + sx−1 =

i∑
j=x

aj +
x−1∑
j=0

aj =

i∑
j=0

aj = si

Based on the scan operator, the standard RW selection on the
array a can be described as follows. Given r a random floating
point value between 0 and sn−1. Then, we can locate an output
element using r , where sk ≥ r and sk−1 < r (if k > 0). The scan-
base RW implementation may perform better than the original
implementation in Algorithm 2 for that there is no floating point
computation in the locating step. We make a validation in Section
4.

We design a new RW approach named Vector-base Roulette
Wheel (VRW) to exploit vector-level parallelism on multicore-
SIMD CPU. This process is demonstrated in Fig. 5. For the con-
venience of understanding our approach, the probability array is
shown in a 2D view with a width of eight. We divide the prob-
ability array into eight lanes. In each lane, the probability data
is then scanned sequentially to produce a partial scanned array.
The computation of the eight lanes could be combined to vector
instructions and executes in streams. More efficiently, the sum of
each lane is kept in an accumulative vector reside in register file to
improve memory locality.

After the vectorized partial scan phase, the accumulative vector
is scanned sequentially. Now, each element in the accumulative
vector represents the total sumof its previous lanes including itself.
By multiplying the last element of the cumulative vector with a
uniformly distributed floating point value between 0.0 and 1.0,
we get a random value r . Then, the VRW locates a city index in
two phases. In the first phase, we could directly select the lane
number slane by r using the elements in the accumulative vector.
In the second phase, we could locate the city index in the selected
lane. Since the probability values in the selected lane is only partial
scanned when slane > 1, we could modify the elements of the
lane to scanned values according to Corollary 1 by adding the value
stored in the lane slane−1. Finally, we could search the probability
array starting from index slane, and in a stride size of eight until the
city index is located.

3.2.4. Adapting our approaches to max–min ant system
Since MMAS has been made great improvements over AS, it is

important to adapt our approaches to MMAS. As we have men-
tioned above, the main structure of the MMAS algorithm is almost
the same as the AS algorithm. The pheromone update strategy
could be modified effortless to extend AS to MMAS. Therefore, we
focus on the strategies for extending our approach to MMAS in the
tour construction stage.

MMAS uses a heuristic approach named nearest neighbor in the
tour construction stage, to speedup sequential computation and
improve solution quality. For each city, a candidate list is initialized
with a fixed size (cl) of its nearest neighbors sorted in ascending
order. An ant chooses a city whose index is selected exclusively
from the candidate list. Until all candidate cities are visited, the
ant is able to take a city outside the list. The candidate list is
similar to the city index array in the compaction-based approach.
In both of these structures, city index is explicitly defined so that
the accumulative vector cannot directly loads probability values in
sequence. Therefore, we first gather a number of probability items
by the city indexes in the candidate list, and pack them into a vector
(Fig. 6). Then, the vector could be processed by the VRW.

A competitive parallel ACO has to be efficient both in execution
speed and in solution quality. So integrating a local search process
is required. According to the local search code provide by Dorigo
and Stützle [4], we implement a 3-opt local search in OpenCL to
augment solution quality of our algorithm. Our parallel implemen-
tation of the local search part is based on TPAM for the reason that
the sequential speedup mechanisms fixed radius search and don’t
look bit [48] are rather complex in control flow.

3.3. The pheromone update stage

Algorithm 3 presents the pheromone update kernel. The global
synchronization method is needed to avoid data writing conflicts
because there is nomechanism for synchronization betweenwork-
groups [23]. In practice, this kernel is decomposed into two kernels
that are called sequentially by the host.

In the first kernel, every path evaporates pheromones indepen-
dently, as configured by the evaporation rate. This process could
be fully parallelized by creating threads with the same number of
paths. Each thread reads the pheromone value of its corresponding
path to private memory to calculate the new pheromone value
and then writes it back to global memory. In the second kernel,
each ant deposits pheromone along their traveled paths. Unlike
the prior step, two or more ants could walk along the same path.
Global memory writing conflicts occur in this situation. However,
CPUs support atomic operations, such as the atomic add function,
to guarantee that the pheromone value could beupdatedby several
ants in parallel. The atomic add function for float is not directly
supported in OpenCL. Thus, we implemented the atomic float add
function using atomic_cmpxchg() (compare and exchange). We
refer to the method described in [49], which is the CUDA version.

Algorithm 3 Pheromone update kernel
1: for each i := 0 → n ∗ n − 1 parallel do
2: Pheromone evaporate
3: end for
4: Global synchronization
5: for each j := 0 → m − 1 parallel do
6: for each k := 0 → n − 1 parallel do
7: Ant j deposit pheromone on its path k using atomic add

operation
8: end for
9: end for

10: end

4. Performance evaluation

We have experimented with our algorithm implemented using
C++ and OpenCL on a PC with an Intel Core(TM) i7-5820k that has
6 cores and 16 GB of DDR4-2133 memory (dual channel). We use
a high-end graphic device, a NVIDIA GTX780 with 3 GB of video
memory and 2304 CUDA cores for comparison. Table 3 provides
the detailed hardware specifications.

Our experiment uses a standard set of benchmark instances
from the TSPLIB library [50]. We use single-precision float-point
numbers for the pheromone information and city distances. On
the algorithmic level, conforming to the experimental principles
adopted by Dorigo et al. [20], our key parameters are configured as
follows:m = n (n being the number of cities), α = 1, β = 2, and ρ =
0.5. On the device level, the work-group size is set to 16, which is
a multiple of vector lanes as recommended in [47]. The number of
total work-items is calculated by ⌈

m
16⌉ ∗ 16. The target instruction

set architecture of the Intel OpenCL kernel builder is set to AVX2.
For the AS algorithm, Each TSP instance is tested in a single

iteration and averaged over 100 independent runs, which is the
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Fig. 5. Vector parallelism approach on the roulette wheel selection process.

Fig. 6. The VRW extends to MMAS in the tour construction stage.

Table 3
Hardware specifications of our test platform.

Property CPU GPU

Manufacturer Intel NVIDIA
Model Core i7-5820 k GeForce GTX780
Codename/architecture Haswell-E Kepler
Clock frequency 3.3 GHz 863 MHz
Cores (SMs)/Threads 6/12 12/2304
Vector lanes/warp size 8 32
L1 Cache size 32 KB per core 64 KB per SM
L2 Cache size 256 KB per core 1.5 MB
L3 Cache size 15 MB N.A.
DRAMmemory 16 GB 3 GB
Memory bandwidth 34 GB/s 288.4 GB/s
Max GFLOP/s(single) 316.8 3977
Max TDP 140 W 250 W

same as Cecilia et al. [10] in performance side. The sequential
baseline algorithm is provided by Stüzle in [4]. We focus on the
efficiency of the parallel ACO algorithm for multicore-SIMD CPU
architecture. However, to ensure that our speedups are convincing,
solution quality comparisons among the results obtained by the
sequential, GPU-based and multicore-SIMD CPU-based algorithms
are also provided.

For the MMAS algorithm, we comply with a different guideline
which is explained in further detail below.

4.1. Evaluation of the TPAM-CPU algorithms in tour construction on
multicore-SIMD CPU

The baseline code is the naive tour construction kernel without
optimizations based on Algorithm 2. Five additional code versions
are presented to show the impact of each strategy applied on
the overall performances of the TPAM-CPU algorithm (Fig. 7). The
speedups are calculated by dividing the naive kernel time with the
optimized kernel time.

Code version 1 is based on the original ACO algorithm. Simply
using the scan operation would reduce about half of the time
required for the TC kernel execution (version 2). On the contrary,
version 3 encounters a dramatic performance loss. This kernel
presents the already described worse utilization of SIMD units. We
could deduce that the branches in the code flow (for example, ‘if’
statements or different loop exit conditions) have a great impact
on the performance of the algorithm. As we have expected, the
compaction strategy (version 4) is almost twice as fast as version 2.
After we add vectorization support by the VRWmethod in version
5, the speedup ratio have a little bit growth. The best efficiency is
achieved in version 6 which expands version 2. This presents the
vector units are fully utilized for acceleration. Note that the VRW
applied to the TPAM have significant better performance gain than
it applied to the TPAM-COMP. The major reason is that the gather
operation in Fig. 6 is actually compiled to amanual packing process
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Fig. 7. Speedups of optimizations on naive tour construction kernel.

in which eight elements are loaded to the vector sequentially on
the CPU. Nevertheless, in parallel machines, the gather operation is
a standard method which is usually supported in instruction-level
(VGATHERDPS instruction in AVX2, for example). So potentially,
there would be a performance gain when the compiler is able to
identify the codes of gather operation in the future.

4.2. Evaluation of the pheromone update kernel

In this section, we discuss performance issues for the
pheromone update kernel on multicore-SIMD CPU. For the porta-
bility of OpenCL, our ACO kernels could also be built to run on the
GPU. So we add GPU execution results to compare.

Fig. 8 demonstrate that in small problems, parallel workloads
are too light to efficiently use the SIMD or GPU resources. As
the problem size increases, the kernel launch latency is better
amortized over parallel computation. Therefore, the parallel algo-
rithms significantly outperform the sequential algorithm in large
problems.

The kernel without atomic operation is the worst parallel strat-
egy. This is because that the kernel is execute serially to avoid
race conditions in writing pheromone values of each ant and the
kernel should launchO(n) times to process for all ants.With higher
memory bandwidth and a lot more hardware threads, the GPU
version perform better than the SIMD CPU.

4.3. Impact of CU number and memory bandwidth on performance

To demonstrate the scalability of our algorithm, we evaluate
it for different numbers of CUs. In our benchmark platform, the
CPU has 6 physical cores and 12 logical cores that are enhanced
by the hyper threading (HT) technology; thus, the CPU contains
12 equivalent logical CUs. We use the subdevice [23] function in
OpenCL to control the active CUs for computing, and each CU
represent a CPU core. Fig. 9 shows that our system performance
increases nearly linearly with the number of active CUs because
more CUs could enhance the parallelism so that more data could
be processed concurrently.

Note that the speedup start decreasing from pr2392. This be-
havior can be elucidated by the following reason: the problem
dataset is too large to fit in last level cache (LLC), so that the thread
stalls towait for data retrieved fromglobalmemory (DRAM). In our
algorithm, two ant data structures are used frequently: the prob
and the visited. The total data size is 8n2

= n ∗ n ∗ 4 ∗ 2 (bytes).
Thus, in the pr1002, the data size is 7.66 MB. Because its size is
smaller than the L3 cache (15 MB), accessing these data structures

could mainly benefit from the cache because in problems where
n is less than or equal to 1002, the memory bandwidth has only
a slight impact on the performance. As the problem size rises,
the size of the ant data structures with space complexity O(n2)
increases dramatically. This result in LLC misses more frequently,
and the data missed are forced to read from the host memory to
the L3 cache. Therefore, the system performance is bounded by
the host memory bandwidth in large-scale TSPs. An analysis of the
LLC miss in solving each TSP confirms this fact (see Table 4) by
using Intel VTune Amplifier XE 2015. The LLC miss start increasing
dramatically from pr2392. This demonstrates that the L3 cache hit
rate decreases dramatically when the ant data structures could not
fully fit in L3 cache.

Our major conclusion here is twofold. The performance of our
algorithm scales upwith the number of CPU cores, and thememory
bandwidth is a primary limiting factor when solving large-scale
TSPs on multicore-SIMD CPUs.

4.4. Multicore-SIMD CPU versus GPU

In this section, we investigate the performance of our algorithm
on GPU and compare it with the multicore-SIMD CPU version. we
use TPAM for comparison because it could run on GPUwithout any
code modification. Fig. 10 shows that the CPU version is obviously
better than the GPU version. This demonstrates that TPAM is better
fit for CPU architecture because that the architecture could handle
diverged ACO codes efficiently for its data caching and flow control
devoted design.

4.5. Comparisons with high performance GPU-based ACO algorithms

4.5.1. Comparisons with high performance AS algorithms
To ensure the computational efficiency of our algorithm, we

compare against the first data parallel GPU implementation of AS
(DPAM-GPU-AS) provided by Cecilia et al. [10]. We rebuild the
original DPAM-GPU-AS in our hardware platform to execute on
GTX780, thus, to ensure our comparison is fair. In Table 5, the
results show our algorithm is up to 3.31x faster than the DPAM-
GPU-AS.

We also compare our algorithmwith two improved GPU-based
ACO algorithms [8,11]. Because there are no source codes provided
from both of them, we could not reproduce results of these algo-
rithms in our hardware platform for direct comparison. Therefore,
we refer to the average execution time reported in [8,11]. To be
fair, a modified version of the VETPAM-CPU algorithm (VETPAM-
CPU-AS-MOD) is used for comparison with Dawson’s [11]. In
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Fig. 8. Execution time comparison of pheromone update kernels.

Fig. 9. Speedups on different CU number configurations.

Fig. 10. Speedup comparison of GPU and multicore-SIMD CPU for the VTPAM algorithm.

Table 4
LLC miss analysis of the VETPAM algorithm on the CPU.

TSP problems d198 lin318 pcb442 rat783 pr1002 fl1577 pr2392 pcb3038 fnl4461
LLC miss 0.012 0.010 0.015 0.011 0.012 0.013 0.228 0.367 0.344

Table 5
Overall execution times (ms) and speedups of our algorithm against the original DPAM-GPU-AS.

Algorithms TSPLIB problems

d198 lin318 pcb442 rat783 pr1002 fl1577 pr2392 pcb3038 fnl4461

DPAM-GPU-AS 2.22 7.51 18.09 86.53 149.85 586.40 2026.47 NAa NA
VETPAM-CPU-AS 1.21 3.42 7.11 29.06 52.70 177.24 858.23 2557.59 10483.20
Speedups 1.82x 2.20x 2.55x 2.98x 2.84x 3.31x 2.36x NA NA

a NA means ‘‘not available’’ due to on-chip shared memory constraints.

VETPAM-CPU-AS-MOD, the pheromone update stage is adopted
from MMAS, which reduces atomic operations largely. The results
demonstrate that our proposed VTPAM-CPU algorithm is over two
times faster than the current best DPAM-GPU-AS algorithms in the
best cases (Table 6).

Table 5 also indicates that the scalability of the VETPAM-CPU is
better than the scalability of the DPAM-GPU. Due to the limitation
of sharedmemory size on eachCU, previousDPAM-GPUalgorithms
usually test TSPs up to 2392 cities. Using strategies in DPAM-GPU,
for example only part of ant data is placed on localmemory and the
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Table 6
Overall execution times (ms) and speedups of our algorithm against improved GPU-based ACO algorithms.

Algorithms TSPLIB problems

d198 a280 lin318 pcb442 rat783 pr1002 nrw1379 pr2392

Uchida et al. [8] 2.64 5.06 8.97 11.54 56.73 87.06 – 2084.78

VETPAM-CPU-AS 1.21 2.38 3.42 7.11 29.06 52.70 124.91 858.23
(2.17x) (2.12x) (2.63x) (1.62x) (1.95x) (1.65x) – (2.43x)

Dawson and Stewart [11] 1.16 2.68 3.39 7.79 42.7 85.11 323 1979.31

VETPAM-CPU-AS-MOD 0.87 1.75 2.57 5.66 25.25 47.17 117.73 822.54
(1.33x) (1.53x) (1.32x) (1.38x) (1.69x) (1.80x) (2.74x) (2.41x)

Fig. 11. Speedup comparison of parallel MMAS with local search (3-opt) algorithms.

rest is loaded from the global memory on demand, may solve this
limiting issue. However, an increased coding effort is required to
manage the GPUmemory. Our VETPAM-CPU algorithm could solve
TSPs up to 4461 cities, and the speedups are still kept as high as
30x (Fig. 9). Furthermore, the VETPAM-CPU could potentially solve
TSPs larger than 4461 cities efficiently without modification to the
code. This is because it directly accesses the global memory, and
the complex memory management in algorithm level is hidden by
the CPU cache hierarchy.

4.5.2. Comparisons of high performance MMAS algorithms
Following the criterions of Delévacq et al. [9], we obtain the

result of testing 7 TSP instances in a fixednumber of 2048 iterations
and averaged over 25 tries. The candidate list size of MMAS and
local search are set at 20 and 40 respectively. We use the same
number of ants (28) as [9], which is different from 25 in [51].
Since we do not have Delévacqs source code, we pick some of the
speedup results from their paper [9]. Note that, the GPU platform
of Delévacq is NVIDIA Tesla C2050 and the sequential version
of their algorithm was run on Intel Xeon E5640, where both of
them were up-to-date hardware architectures at that time. Fig.
11 shows that our VETPAM-CPU algorithm could achieve similar
speedups compared with the GPU-based counterpart under the
same algorithm configuration.

As aforementioned, we present a new vector-enhanced algo-
rithm for ACO onmulticore-SIMD CPUs and new design of roulette
wheel selection approach in the tour construction stage. We be-
lieve our ideas could bring acceleration to other population-based
metaheuristic algorithms on multicore-SIMD CPUs.

4.6. Solution quality validation

4.6.1. VTPAM-AS algorithm
Following the guidelines of Cecilia et al. [10], we obtain the

result of testing all algorithms a fixed number of 1000 iterations

and averaged over 10 tries. Fig. 12 shows the quality comparison
for the solutions.

The results indicate that the solution quality of the algorithm
that we present is similar to the solution quality of the sequential
code. The solutions we obtain are not optimal because of the
limitation of the original Ant System algorithm as explained by
Stützle and Hoos [51], and this can be improved by adding a local
search process to each ant.

4.6.2. VTPAM-MMAS with local search algorithm
We compare our solution quality with the state-of-the-art

MMAS algorithms in literature [9,51]. Table 7 provides average
and minimum results for each approach. We also give results
of two large TSP instances for that CPU-based algorithm is not
limited by local memory size. Our solution quality is similar to
the previous algorithms. The results are near optimum (sometimes
optimum) except two large datasets. The reason is that the number
of iterations (2048) is not enough for that problem size.

The comparison results of the solution quality present that our
methods are efficient both in execution speed and in solution
quality.

5. Conclusions and future work

In this paper, we aim to provide efficient parallel ACO mod-
els for CPU-based SIMD architecture. After improving the general
task-parallel approach, we investigate both sequential and vector-
parallel optimization strategies. We have demonstrated that sim-
ple vectorization strategy does not fit well on SIMD CPUs. In order
to fully exploit vector-level parallelism, we propose an alternative
approach based on vectors. In this approach, our algorithm distin-
guishes branch codes and data-intensive codes, and then the codes
are executed on scalar units and vector units respectively. We use
a large range of TSP instances varying from 198 to 4461 cities to
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Fig. 12. Solution quality comparison results of AS algorithms.

Table 7
Solution quality comparison results of MMAS with local search (3-opt) algorithms. Minimum and average values are given.

Algorithms TSPLIB problems

d198 lin318 rat783 fl1577 d2103 pcb3038 fnl4461

Stützle and Hoos [21] 15780 42029 8806 22261 – – –
15780.2 42061.7 8816.08 22271.8 – – –

Delévacq et al. [9] 15780 42029 8806 22262 80522 – –
15780.04 42036.04 8828.68 22286.1 80682.4 – –

Sequential algorithm 15780 42029 8806 22281 80463 137905 183010
15780 42038.12 8808 22303.76 80511.96 138097 183289.96

VTPAM-CPU-MMAS-3OPT 15780 42029 8806 22274 80451 137949 183145
15780 42033.56 8810 22304.72 80513.64 138111.52 183322.72

Optimum 15780 42029 8806 22249 80450 137694 182566

evaluate our algorithm, and we achieve speedups over sequential
version as high as 57.8 in the AS and 8.3 in the MMAS with 3-opt
local search, and meanwhile keep similar solution quality.

Furthermore, to demonstrate the validity and significance of
our contributions, we compare our approach with state-of-art
high performance GPU-base parallel ACOs. Our benchmark results
demonstrate that our SIMD CPU-based ACO algorithm achieves
a competitive performance compared with GPU-based ACO al-
gorithms. The solution quality of our approach is evaluated to
guarantee that the competition is convincingwhen comparedwith
GPU-based approaches.

More interesting, the proposed method can be generalized.
VRW approach can be applied to other metaheuristics including
stochastic selection process such as genetic algorithms. And the
vector-enhanced task parallel model also can be applies to other
population-based metaheuristics for their similarities in the be-
haviors.

In the future, we should investigate the vectorization ap-
proaches in the context of MIC architectures, which have larger
SIMD registers such as Intel Xeon Phi Coprocessors. And the quan-
titative performance analysis and algorithmic optimization for
parallel ACO algorithms should be conducted on different parallel
architectures. We should also apply our approaches to parallelize
other algorithms which we have implemented the sequential ver-
sions, such as collaborative computing [52–54] and Hausdorff dis-
tance computing [55,56]. Finally, we should also try to extend the
idea to the areas of graphics/image/video process [57–64].
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