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Abstract

A new micro-mechanical model is developed to predict the behavior of unidirectional polymer matrix composite laminates under
impact loading conditions and implemented in the non-linear finite element software LS-DYNA. This model accounts for the progressive
post-failure behavior and strain-rate dependency of polymer matrix composites making it suitable for impact simulations. A continuum
damage mechanics (CDM) based failure model is used to incorporate the progressive post-failure behavior. A set of Weibull distribution
functions are used to quantify damage evolution and corresponding reduction in stiffness in different modes in the fibers. Similar func-
tions based on strains are used for the resin. Fiber breakage is assumed as the only ultimate failure mode. In addition to these micro-
failure modes, delamination, which is a macro-level failure, is also incorporated using an approach developed earlier for a ply-level
progressive failure model. Strain-rate dependent behavior is incorporated by assuming viscoplastic constitutive relations for the resin.
Additionally, the in-plane shear modulus of the fiber is also assumed to be rate dependent. Experimental results available in the literature
are used to validate the model’s predictions.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite materials are used as structural members in a
wide range of applications involving impact such as crash-
worthiness, protective armors in air and space vehicles.
Studies on the response of composites to impact loading
have shown that such loading can cause a substantial
amount of damage resulting in significant reductions in
their strength and stiffness. Also, various modes of damage
such as fiber breakage, matrix cracking, and delamination
are found to occur in varying proportions depending on
parameters such as the projectile mass, velocity, kinetic
energy, shape of the end of the projectile, the span of the
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target, and boundary conditions [1]. It is a widely accepted
fact that it is difficult to predict the exact mode and extent
of such damages, thereby making this behavior one of the
most important aspects that inhibits widespread applica-
tion of composite materials. This has naturally resulted in
extensive studies in this field in recent years. A large num-
ber of reports on impact damage in composite structures
are available in the literature [1–7] detailing experimental
investigations, and analytical and numerical models that
have been developed. But there exists no universal
approach for the prediction or the representation of the
behavior of composite structures under impact loading [2].

Due to the sophisticated computing technology avail-
able now, finite element (FE) simulations have become a
widely used approach for studying the damage develop-
ment in composites. New material models are developed
and implemented in FE software to provide detailed
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Fig. 1. Representative volume cell (RVC) of unidirectional fiber rein-
forced polymer composites used to develop the micro-mechanical model.
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information on the spatial and temporal distribution of
damage during impact [7]. The transient non-linear FE
code LS-DYNA [8] is a popular and powerful software
for such efforts as it offers users a very simple interface to
implement their own material models.

Current composite models in LS-DYNA are all macro-
mechanical models which require the effective properties of
composites as input. These models assume that the
response of an individual lamina is linear elastic (or non-
linear elastic in in-plane shear) up to failure. The various
models differ, however, in their formulation of failure crite-
ria used to signal the onset of damage in a lamina [7]. They
use different failure criteria to predict different fiber and
matrix modes and model failure by reducing dominant
stiffness and stress components instantaneously to zero.
Physically, this type of modeling is equivalent to assuming
ideally brittle post-failure behavior and has been shown to
be unrealistic. In addition to the in-built models in LS-
DYNA, there are also two additional models, MAT 161
and 162, for unidirectional and fabric composites, respec-
tively, which have been developed and implemented by
Materials Sciences Corporation. These models use the con-
tinuum damage mechanics (CDM) approach for failure
and have been shown to be effective in modeling composite
behavior under high strain rate conditions. Recent research
suggests that the damage growth in the vicinity of a crack
tip or fracture site in a polymeric composite structure man-
ifests itself in the form of strain softening of the material.
Strain-softening behavior can be more rigorously dealt
with through models based on CDM [7]. Matzenmiller
et al. [9] developed a rigorous composite damage model,
based on the principles of CDM for the non-linear analysis
of composite materials. Later studies by Williams and Vaz-
iri [7] and Van Hoof et al. [10] have shown that such pro-
gressive post-failure models based on CDM improve the
prediction of impact damage of composite structures sig-
nificantly. A brief discussion of the origin, development,
and broad spectrum of applications of CDM is given in
Williams and Vaziri [7].

Another behavior characteristic of polymer matrix com-
posites that is important in impact simulations is their
strain-rate dependency. A review of the literature on this
topic is given in Goldberg [11]. Most of the three-dimen-
sional materials presented in the literature for rate sensitiv-
ity of composites are empirical and consider the entire
lamina to be rate-sensitive [11]. Since some fibers are
rate-sensitive and some are not while almost all matrix
materials are rate-sensitive, care must be taken to separate
the effect of the constituents on the composite. For this
purpose, micro-mechanics equations, in which the effective
behavior of the composite is computed based on the prop-
erties and response of the individual constituents, are most
suitable for this application [12].

The objective of the present work is to develop a three-
dimensional material model to predict the response of uni-
directional composites under impact loading conditions
and implement it in LS-DYNA. As explained in the follow-
ing sections, this is achieved by using: (1) micro-mechanics
and iso-strain assumptions to develop the equations relat-
ing stresses and strains of constituents to the average lam-
ina values; (2) a CDM based approach to model the
progressive post-failure behavior; and (3) viscoplastic con-
stitutive relations for the resin to model strain-rate
sensitivity.

2. Micro-mechanical model

The representative volume cell (RVC) used to develop
the micro-mechanical relations is shown in Fig. 1. This
RVC was originally proposed by Pecknold and Rahman
[13] and has been used later by Tabiei and Chen [14] and
Tabiei et al. [12]. The fibers are assumed to be of square
cross-section for computational efficiency since this model
is implemented in an explicit FE code which uses very small
time steps for simulations. The unit cell is divided into
three sub-cells: one fiber sub-cell, denoted as f, and two
matrix sub-cells, denoted as MA and MB, respectively.
The three sub-cells are grouped into two parts: material
part A consists of the fiber sub-cell f and the matrix sub-cell
MA, and material part B consists of the remaining matrix
MB. The dimensions of the unit cell are 1 � 1 unit square.
The dimensions of the fiber and matrix sub-cells are
denoted by Wf and Wm, respectively, as shown in Fig. 1
and defined as below (see [13])

W f ¼
ffiffiffiffiffiffi
V f

p
; W m ¼ 1� W f ð1Þ

where Vf is the fiber volume fraction [13]. As explained in a
later section, effective stresses in the RVC are determined
from the sub-cell values in two phases: first, stresses in fiber
f and matrix MA are combined to obtain effective stresses in
part A which are then combined with stresses in matrix MB

to obtain the effective RVC stresses.
The following assumptions are made regarding behavior

of the constituents and the composite as a whole.

1. The matrix constituent i.e. resin is a homogeneous,
viscoplastic material that is initially isotropic but
becomes orthotropic with damage evolution, if any.
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2. The reinforcing constituent i.e. fibers is a homogeneous,
linearly elastic material that is initially transversely iso-
tropic but becomes orthotropic with damage evolution,
if any.

3. The fibers govern the behavior of the composite in direct
loading and the resin in shear. As a consequence of this
assumption, only damages to fibers that affect direct
stresses and damages to resin that affect shear stresses
are taken into account.

4. The fibers are positioned in the matrix such that the
composite lamina is a homogeneous material on the
macro-mechanical scale.

5. There is a complete and strong bond at the interface of
the constituent materials.

As mentioned above, the matrix material is assumed to
be a viscoplastic material. When plasticity is involved in a
micro-mechanical model, the iso-stress boundary condi-
tions between some constituents cause big difficulty. The
plastic strain is an additional redundant unknown and
the boundary conditions are not enough to solve the prob-
lem for all of the unknowns. The iso-strain boundary con-
ditions are widely used in the micro-mechanical approach
of composite materials although for elastic property pre-
diction it is known that they do not give the best result.
Iso-strain boundary conditions are assumed for all the
three sub-cells of the RVC in order to avoid any difficulties
and to simplify the calculations. This means that the strain
tensor as well as the tensor of the strain-rate is the same for
all points of the RVC [15].

The material model is implemented for solid (brick) ele-
ments in LS-DYNA. The strain-rate is received as input by
the material model and the stresses are computed and
returned as output. So, the objective of material model
development is to determine the stress response of the
RVC for a given strain-rate at each time step. As described
in the following sections, the stresses in the RVC are deter-
mined from the stresses in the constituents (sub-cells)
which are in-turn determined from their individual proper-
ties and the total strains. Hence, the total strains of the
RVC are accumulated from the strain-rates at each time
step using the following relation and stored as history
variables.

eðnþ1Þ
ij ¼ eðnÞij þ _eðnÞij dt; i; j ¼ 1; 2; 3 ð2Þ
3. Viscoplastic constitutive relations for matrix material

Polymer matrix composites exhibit strain-rate depen-
dent deformation behavior, especially for the matrix dom-
inated properties. Experimental studies have shown that
this behavior is primarily due to the viscoplastic nature
of resins that are used as matrix materials. Hence, strain-
rate dependency is incorporated in the current model by
assuming a viscoplastic relationship developed by Gold-
berg and Stouffer [16] for the matrix constituent (sub-cells
MA and MB). They developed this constitutive relationship
for resins using the state variable approach and used it in
their material model for unidirectional composites. They
defined their state variable as an internal stress, which
evolved with stress and inelastic strain and represented
the average effects of the deformation mechanisms. This
approach has also been used in other similar works
[12,15,17] to model polymer matrix composites and shown
to be effective. For completeness, the Goldberg–Stouffer
relations are discussed briefly in this section. Further
details about the relations can be found in [16].

The total strain-rate is assumed to be the sum of elastic
and inelastic strain-rates. The elastic strain-rate is equal to
the ratio of stress rate to Young’s modulus of the material
while the inelastic strain-rate is defined to be proportional
to the exponential of the overstress, the difference between
the applied stress and the tensorial internal stress state var-
iable. It is given by the relation:

_eI
ij ¼ D0 exp � 1

2

Z2
0

3K2

� �n� �
Sij � Xijffiffiffiffiffiffi

K2

p ð3Þ

where _eI
ij;Xij are the components of inelastic strain-rate,

and internal stress, respectively, Do is a scale factor repre-
senting maximum inelastic strain-rate, n is a variable which
controls rate dependence of the deformation response, Zo

represents the isotropic, initial hardness of the material be-
fore any load is applied, Sij are components of the deviator-
ic stress tensor given by the relation:

Sij ¼
rij � dijrkk

3
ð4Þ

where rij are the components of stress, and dij is Kroneck-
er’s delta. K2 in Eq. (3) is defined as an effective stress given
by the relation:

K2 ¼
1

2
ðSij � XijÞðSij � XijÞ ð5Þ

and represents the second variant of the overstress tensor.
Do, Zo and n are material constants which are determined
from experiments. The procedure for determining them
can be found in [16].

The internal stress rate is given by the relation:

_Xij ¼
2

3
qXm _eI

ij � qXij _e
I
e ð6Þ

where Xij; _Xij and _eI
ij are components of internal stress,

internal stress rate, and inelastic strain-rate, respectively,
and _eI

e is effective inelastic strain-rate given by the relation:

_eI
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_eI

ij _e
I
ij

r
ð7Þ

It is to be noted that Eqs. (3)–(7) actually formulate one
differential equation per component of the tensorial param-
eters involved or one first order tensorial differential equa-
tion which has no closed form solution. Hence, a numerical
solution is obtained at each time step of the explicit FE
simulation.



68 A. Tabiei, S.B. Aminjikarai / Composite Structures 88 (2009) 65–82
The explicit time integration method requires small time
steps for a stable solution and it is provided in such a FE
code, but still in impact situations a high strain increment
could appear despite the small time step. In order to ensure
stability of the differential equation solution, the four-step
Runge–Kutta method is adopted here [15]. Eqs. (3), (6),
and (7) are converted to their incremental forms for this
purpose and implemented in the model. Incremental forms
of the equations are obtained by multiplying the rate equa-
tions by the time step dt. The resulting equations are as
follows:

deI
ij ¼ D0 exp � 1

2

Z2
0

3K2

� �n� �
Sij � Xijffiffiffiffiffiffi

K2

p
� �

dt ð8Þ

dXij ¼
2

3
qXm deI

ij � qXij deI
e

� �
dt ð9Þ

deI
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
deI

ij deI
ij

r !
dt ð10Þ

where the terms are as defined earlier but some with prefix
d representing their incremental values.

At time step n + 1 of the explicit time integration, the
following values are available and are all used as input
parameters for the matrix material stress response calcula-
tion: stress of the matrix material from the previous time
step n; rmðnÞ

ij , strain at the current time step, eðnþ1Þ
ij , strain-

rate at the current time step, _eðnþ1Þ
ij , inelastic strain from

the previous time step, eIðnÞ
ij , and the state variable, XmðnÞ

ij .
At the first step of the Runge–Kutta method, assume that:

rij ¼ rmðnÞ
ij ; Xij ¼ XmðnÞ

ij ð11Þ

Then, applying Eqs. (3)–(10), the results for inelastic strain
increment and for state variable increment are denoted as
follows:

deI1
ij ¼ deI

ij; dX1
ij ¼ dXij ð12Þ

Then, the inelastic strain, stress, and state variable are up-
dated as follows:

eI
ij ¼ eIðnÞ

ij þ
1

2
deI1

ij ð13Þ

frg ¼ ½Cm�ðfegðnþ1Þ � feIgÞ ð14Þ

Xij ¼ XmðnÞ
ij þ 1

2
dX1

ij ð15Þ

where ½Cm� ¼

Cm
11 Cm

12 Cm
12 0 0 0

Cm
11 Cm

12 0 0 0
Cm

11 0 0 0
Cm

44 0 0
Symm: Cm

44 0
Cm

44

2
6666664

3
7777775

is the
stiffness matrix of the resin,

Cm
11 ¼

Emð1�mmÞ
ð1þmmÞð1�2mmÞ ;C

m
12 ¼ Emmm

ð1þmmÞð1�2mmÞ ;C
m
44 ¼ Gm ¼ Em

2ð1þ2mmÞ ;

Em is its Young’s modulus, mm is its Poisson’s ratio,

and Gm is its shear modulus.
At the second step, rij from Eq. (14) and Xij from Eq.
(15) are accepted as input parameters and the results of
application of Eqs. (3)–(10) are denoted as

deI2
ij ¼ deI

ij; dX2
ij ¼ dXij ð16Þ

Again, the inelastic strain, stress, and state variable are up-
dated as follows:

eI
ij ¼ eIðnÞ

ij þ
1

2
deI2

ij ð17Þ

frg ¼ ½Cm�ðfegðnþ1Þ � feIgÞ ð18Þ

Xij ¼ XmðnÞ
ij þ 1

2
dX2

ij ð19Þ

The input parameters of the algorithm at the third step are
rij from Eq. (18) and Xij from Eq. (19) and the results ob-
tained are:

deI3
ij ¼ deI

ij; dX3
ij ¼ dXij ð20Þ

Before the last step of the Runge–Kutta method (4), the to-
tal inelastic strain, stress, and state variable are again up-
dated as follows:

eI
ij ¼ eIðnÞ

ij þ deI3
ij ð21Þ

frg ¼ ½Cm�ðfegðnþ1Þ � feIgÞ ð22Þ
Xij ¼ XmðnÞ

ij þ dX3
ij ð23Þ

At the fourth and final step, rij from Eq. (22) and Xij from
Eq. (23) are accepted as input parameters and the results of
application of Eqs. (3)–(10) are denoted as

deI4
ij ¼ deI

ij; dX4
ij ¼ dXij ð24Þ

Finally, the inelastic strain, stress, and internal state vari-
able of the matrix material can be updated for time step
n + 1 from the previous time step values and the results
of the Runge–Kutta steps as follows:

eIðnþ1Þ
ij ¼ eIðnÞ

ij þ
1

6
deI1

ij þ
1

3
deI2

ij þ
1

3
deI3

ij þ
1

6
deI4

ij ð25Þ

frgmðnþ1Þ ¼ ½Cm�ðfegðnþ1Þ � feIgðnþ1ÞÞ ð26Þ

Xmðnþ1Þ
ij ¼ XmðnÞ

ij þ 1

6
dXI

ij þ
1

3
dXII

ij þ
1

3
dXIII

ij þ
1

6
dXIV

ij ð27Þ
4. Constitutive relations for fibers

The fibers are assumed to be linearly elastic materials
which are initially transversely isotropic but become ortho-
tropic with damage evolution, if any. It is assumed that
damages to the fibers are a result of direct stresses applied
on them only and that shear stresses do not cause any dam-
ages. This corresponds to the assumption that the fiber
material properties govern the behavior of unidirectional
composites under direct loading and the matrix material
properties govern the behavior of composites under shear.
The damages are assumed to be oriented in the material
directions of the fibers and independent. Finally, it is
assumed that damage evolution in the fiber direction leads
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to ultimate failure of the composite material and there is no
other ultimate failure or other damage that contributes to
the ultimate failure. The independence of the damages
avoids the seeking for a damage dissipation function often
utilized in the continuum damage mechanics.

The constitutive relations of the fibers can be written in
matrix form as

frgf ¼ ½Cf �fegf ð28Þ
where [Cf] is their stiffness matrix which can be partitioned
into direct and shear stress stiffness matrices as follows:

½Cf � ¼ ½Sf ��1 ¼
½Sfd ��1 ½0�3�3

½0�3�3 ½Sfs��1

" #
ð29Þ

The direct stress compliance matrix, whose inverse is the di-
rect stress stiffness matrix, should be symmetric and the fol-
lowing relationship should be obeyed:

mij

Ei
¼ mji

Ej
i; j ¼ 1; 2; 3 and i–jðno summationÞ ð30Þ

The direct and shear stress compliance matrices in terms of
the properties of the fibers are:

½Sfd � ¼

1
ð1�d1ÞE1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m12

ð1�d1ÞE1

m21

ð1�d2ÞE2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m12

ð1�d1ÞE1

m21

ð1�d3ÞE2

q
1

ð1�d2ÞE2
� m23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�d2ÞE2ð1�d3ÞE2

p

Symm: 1
ð1�d3ÞE2

2
6664

3
7775
ð31Þ

½Sfs� ¼

1
G12

0 0

1
G23

0

Symm: 1
Go12

2
664

3
775 ð32Þ

where E1, E2 are the longitudinal and transverse moduli of
the fibers, respectively, mij, i, j = 1, 2, 3 and i – j, are its
Poisson’s ratios, Go12, G12 are its initial and strain-rate
dependent in-plane shear moduli respectively, G23 is its
transverse shear moduli, and di, i = 1, 2, 3, are damage
parameters given in the following section on progressive
failure modeling. Strain-rate dependency of the model is
confined to the parameters determining the main behavior
of unidirectional composites. Since in-plane shear is one of
them, the shear modulus G12 is defined as strain-rate
dependent with the following relationship of dependency:

G12 ¼ aGss þ Go12 ð33Þ

ss ¼
1

t

Z t

0

log
j_e12j
_eo

� �
dt ð34Þ

where aG is a parameter which expresses the strain-rate sen-
sitivity of G12, t is the time elapsed, Go12 is the initial in-
plane shear modulus of the fibers, _e12 is the in-plane shear
strain-rate, _eo is a basic strain-rate with which the current
strain-rates are compared and is accepted as the strain-rate
of the static loading for a given working strain-rate range.
A time integration of the strain-rates is needed as they are
not constant during impact simulations and also because
the stress–strain relationship for the fibers is based on their
secant stiffness and not tangential stiffness.

5. Progressive failure model

5.1. Damage evolution in constituents

In the current model, damage growth is based on a Wei-
bull distribution of strengths which is commonly associated
with the strength of fibers. The Weibull distribution func-
tion is chosen as it describes the failure of a bundle of fibers
with initial defects very well and reasonably [15].

Following the concept of damage unrecovery, the evolu-
tion function for damage describing fiber breakage at time
step n + 1, is expressed as follows:

dðnþ1Þ
1 ¼ min 1� exp � 1

mf1e
E1ke11j
r1tjc

� �mf1
� �

; dðnÞ1

� �
ð35Þ

where t|c denotes tension or compression. When e11 > 0,
the parameters for tension are utilized and the parameters
for compression otherwise. When the damage d1 reaches
0.99 in tension, the finite element is considered totally
failed. r1t|c is not simply the strength of the fibers but is a
reduced value given by the relation:

r1tjc ¼
X tjc

btjc
ð36Þ

where Xt|c is the tensile/compressive strength of the pure fi-
bers, and bt|c is a reduction factor. The physical justification
for using such a factor is the fact that fibers generally dis-
play reduced strengths in unidirectional composites as evi-
denced by the lower strength of the latter compared to the
former in uni-axial longitudinal tension. This factor is
determined by simulating uni-axial tensile tests on a single
element model and matching the ultimate stress to experi-
mentally observed values.

The damage evolution functions in the fiber transverse
directions are similar to the longitudinal one. The proper-
ties of the fibers in both transverse directions are the same,
therefore the evolution functions as well as their parameters
are the same, only the history of the loading is different.

dðnþ1Þ
2 ¼ min 1� exp � 1

mf2e
E2je22j
r2tjc

� �mf2
� �

; dðnÞ2

� �
ð37Þ

dðnþ1Þ
3 ¼ min 1� exp � 1

mf2e
E2je33j
r2tjc

� �mf2
� �

; dðnÞ3

� �
ð38Þ

The damages in transverse directions of the fibers are con-
strained to not exceed 0.90 to avoid numerical instabilities.

The concept of effective elastic moduli is accepted for the
fiber material damages and the damages are applied on the
stiffness coefficients as shown in Eq. (31).

Damages are imposed on the matrix material, but they
affect only the shear stresses of the resin, which is consid-
ered to have the main contribution to the shear stresses
of the RVC. The single Weibull distribution function is
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accepted again as an evolution function of the damages but
it involves the ultimate strain for the damage development
rather than the ultimate stress. The damage evolution func-
tion for in-plane shear is as follows:

dðnþ1Þ
4 ¼ min 1� exp � asje12j

e4m

� �ms
� �

; dðnÞ4

� �
ð39Þ

where e4m is the ultimate shear strain of the matrix mate-
rial, and as is a factor that is used to control the damage
initiation strain and the rate of damage evolution.

Similarly, the damage evolution functions for transverse
shear failure of the matrix material at time step n + 1 are
calculated as follows:

dðnþ1Þ
5 ¼ min 1� exp � asje23j

e5m

� �ms
� �

; dðnÞ5

� �
ð40Þ

dðnþ1Þ
6 ¼ min 1� exp � asje31j

e4m

� �ms
� �

; dðnÞ6

� �
ð41Þ

The damages of the matrix material are constrained to
not exceed 0.80. These damages are applied on the matrix
material shear stresses when the stress response of the
sub-cells is calculated. The concept of effective stress is ac-
cepted here for the matrix material, rather than the con-
cept of the effective elastic moduli, because the matrix
material model is isotropic while the damages in the mate-
rial are not. The other reason is that the viscoplastic
material model calculates the actual stress of the material,
not the effective stress of the damaged material [15]. Note
that three different damage exponents are used for the
constituent level damage evolution functions: (1) mf1 for
fiber failure in the longitudinal direction (ultimate failure),
(2) mf2 for fiber transverse failure and (3) ms for matrix
failure in shear.

5.2. Delamination

A composite lamina model based on the 3D stress field
has been developed by MSC to enhance the modeling
capability of the progressive failure behavior of composite
laminates due to transverse impact. It has been imple-
mented into LS-DYNA as MAT 161. This failure model
can be used to effectively simulate fiber failure, matrix
damage, and delamination behavior under all conditions
– opening, closure, and sliding of failure surfaces. Fur-
thermore, this progressive failure approach is advanta-
geous as it enables one to predict delamination when
locations of delamination sites cannot be anticipated i.e.
locations of potential delamination initiation is calculated
without a priori definition of an inter-laminar crack sur-
face [18]. The approach used in this ply-level model to
account for delamination failure is adapted in the current
micro-mechanical model.

Delamination is considered to be a failure mode which is
due to the quadratic interaction between the through-the-
thickness stresses of a lamina and is assumed to be mainly
a matrix failure. The loading criterion for this failure mode
is assumed to have the following form:

S2 E3he33i
S3t

� �2

þ G23c23

S230 þ SSR

� �2

þ G31c31

S310 þ SSR

� �2
( )

� r2 ¼ 0 ð42Þ

where hi are Macaulay brackets, E3 is the normal tensile
modulus of the lamina, G23 and G31 are the transverse
shear moduli of the lamina, S3t is the through-the-thickness
tensile strength of the lamina, S230 and S310 are the trans-
verse shear strengths of the lamina for tensile e33, r is the
damage threshold, and S is a scale factor introduced to
provide better correlation of delamination area with exper-
iments which can be determined by fitting analytical pre-
diction to experimental data for the delamination area.
Under compressive through-the-thickness strain, e33 < 0,
the damaged surface (delamination) is considered to be
‘‘closed”, and the damage strengths are assumed to depend
on the compressive normal strain ez similar to Coulomb–
Mohr theory i.e.

SSR ¼ E3 tan uh�ezi ð43Þ

where u is Coulomb’s friction angle. Effective moduli of
the lamina used in Eq. (42) are computed at the first time
step and stored as material properties.

dðnþ1Þ
lam is the damage variable associated with this failure

mode and its evolution is given by the relation:

dðnþ1Þ
lam ¼ min 1� exp

1

md

ð1� rmdÞ
� �

; dn
lam

� �
ð44Þ

where r is the damage threshold as given in Eq. (42) and md

is the damage exponent for delamination. Delamination
damage is constrained to not exceed 0.90 to avoid numer-
ical difficulties and when this minimum value is reached in
an element, it is considered to be fully delaminated. Note
that the delamination damage exponent is assumed to be
different from the constituent level damage evolution func-
tions given earlier.

When delamination failure given by Eq. (42) occurs in
an element, it is assumed that there is no in-plane damage
within the element and the load carrying behavior in the
through-the-thickness direction is assumed to depend on
the opening or closing of the damage surface. Similar to
the matrix failure modes, the concept of effective stresses
is accepted for this failure mode and damages are applied
on the effective RVC stresses as defined in the following
section using damage variables dðnþ1Þ

z ; dðnþ1Þ
yz ; and dðnþ1Þ

zx

defined as follows:

For tensile mode; e33 > 0 : dðnþ1Þ
z ; dðnþ1Þ

yz ; dðnþ1Þ
zx ¼ dðnþ1Þ

lam ð45Þ

For compressive mode; e33 < 0 : dðnþ1Þ
yz ; dðnþ1Þ

zx ¼ dðnþ1Þ
lam ð46Þ

For tensile mode, all the through-the-thickness stress com-
ponents r33, r23 and r31 of RVC are reduced while for com-
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pressive mode, the damage surface is considered to be
closed, and thus, r33 is assumed to be elastic and only r23

and r31 are reduced.
6. Stress calculations

The effective stresses in the RVC are determined from
the sub-cell values in two phases: first, stresses in the fiber
f and matrix MA are used to determine the effective stres-
ses of part A; then these stresses and the stresses in matrix
MB are used to determine the effective stresses in the
RVC.

As mentioned earlier, iso-strain boundary conditions are
assumed for all the three sub-cells of the RVC. This implies
the rule of mixture for the stress calculations. The simple
rule of mixture applied on all components of the fiber
and the matrix material stresses means physically that the
fiber and matrix materials act in parallel in all directions
under loading, which is definitely not realistic. However,
this assumption is made in order to simplify the micro-
mechanical relations.

The direct stresses of part A are calculated from the
direct stresses of the fiber sub-cell f and the matrix sub-cell
MA using the following relations:

rA
11 ¼ W fr

f
11 þ ð1� W fÞrmA

11 ð47Þ
rA

22 ¼ W fr
f
22 þ ð1� W fÞrmA

22 ð48Þ
rA

33 ¼ W fr
f
33 þ ð1� W fÞrmA

33 ð49Þ

The behavior of unidirectional composites under shear is
dominated by the behavior of the matrix material. The con-
tribution of the fibers to the shear stress is very low com-
pared to the contribution of the matrix material. Hence,
ad hoc volume fraction coefficients are implemented for
shear and a rule of mixture involving them is applied.
Then, the shear stress of part A is determined, applying
the damages of the matrix material introduced in the previ-
ous section, as follows:

rA
12 ¼ V s4r

f
12 þ ð1� V s4Þð1� d4ÞrmA

12 ð50Þ
rA

23 ¼ V s5r
f
23 þ ð1� V s5Þð1� d5ÞrmA

23 ð51Þ
rA

31 ¼ V s4r
f
31 þ ð1� V s4Þð1� d6ÞrmA

31 ð52Þ

The shear volume fraction coefficients, Vs4 and Vs5, are
different for the in-plane and transverse shear. They have
values quite lower than the volume fraction of the fibers.
Since the matrix material is modeled as viscoplastic and
the fibers are modeled as elastic, after the saturation of
the plasticity in the matrix material, the contribution of
the fibers to the shear stress of the sub-cells plays a role
of strain hardening.

Finally, the effective stresses in the RVC are obtained by
applying the rule of mixtures again which yields the follow-
ing relations including the softening of through-the-thick-
ness components due to delamination failure as follows:
r11

r22

r33

r12

r23

r31

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

RVC

¼

1 0 0 0 0 0

1 0 0 0 0

dðnþ1Þ
z 0 0 0

1 0 0

Symm: dðnþ1Þ
yz 0

dðnþ1Þ
zx

2
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ð53Þ

The total strains of the RVC, the total stresses in the matrix
material, the internal state variables of the matrix material,
the damage variables, and the time average strain-rate log-
arithms, Sd and Ss, are kept as history variables at each
time step of the explicit time integration process for the
next time step calculations.

7. Numerical results and discussion

7.1. Impact of CFRP plates made of T800H/3900-2 fiber/

resin system

In this verification example, an impact event with a
nominal incident energy level of 33.4 J imparted on CFRP
plates made of T800H/3900-2 fiber/resin system with a
laminate stacking sequence of [45/90/�45/0]3S and total
thickness of 4.65 mm is simulated using the current mate-
rial model and LS-DYNA. Contact force–time history
and the back face fiber damage due to this impact event
has been determined by experiments and is available in
[7]. These experimental results were originally obtained as
part of a series of drop-weight (high mass, low velocity)
and gas-gun (low mass, high-velocity) impact tests [19–
21] and were used by Williams and Vaziri [7] to evaluate
the predictive capability of a plane-stress CDM based
model for composite materials that they implemented in
LS-DYNA.

Due to the relatively high stiffness of the test apparatus
compared to the transverse stiffness of the composite plate,
Williams and Vaziri [7] made the following two simplifying
assumptions for their FE simulations. First, the plate was
considered to be simply supported all around the perimeter
of the test frame rectangular opening of size 127 mm
� 76.2 mm. Second, the hemispherical steel impactor
(25.4 mm in diameter) was treated as rigid and only the
contact surface was discretized using rigid shell elements
[7]. These assumptions were validated by Williams and
Vaziri [7] by comparing results from the simplified model
to a more sophisticated model that took into account the
flexibility of the impactor and the supporting frame. The
same assumptions are made in the FE simulations using



Fig. 2. Longitudinal stress–strain behavior predicted by the current model
with different values of damage parameter mf1 for a [45/90/�45/0]3S

T800H/3900-2 CFRP laminate.
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the current model also. However, unlike their simulations
which used shell elements, the laminate is discretized using
solid elements here since the current model is implemented
for solid elements. Also, the mid-plane nodes of the lami-
nate are constrained in the Z-direction to duplicate the sim-
ply supported boundary condition of the shell elements.

Material properties of the constituents and other
parameters involved in the micro-mechanical model are
presented in Table 1. All the input values required for
the current model are not available in [7]. The unavailable
values are either obtained from literature [11,15] or realis-
tic estimates are used. For example, the transverse modu-
lus of T800H fibers is not available in literature. It is
assumed to be about 1/15th of its longitudinal modulus
which is the typical case with most fibers. Similarly for
the toughened 3900-2 Epoxy resin, the parameters required
for its viscoplatic constitutive relations are not available
directly in literature and neither are their uni-axial and
shear responses at different strain-rates from which they
can be determined. The values used for 3501-6 Epoxy,
which is also a similar toughened Epoxy, in [15] are used
as approximate values.

Fig. 2 shows typical tensile stress–strain behaviors pre-
dicted by the current model for different values of the dam-
age parameter mf1. It can be clearly seen from the curves
that a small value of mf1 makes the material behave in a
very ductile manner and the behavior becomes increasingly
brittle as mf1 increases. It is well known that it is difficult to
obtain the softening response of most quasi-brittle materi-
als including fiber-reinforced composites. The softening
response heavily depends on the setup and test machines,
which can lead to very scattered results. Consequently,
the choice of damage parameters for each mode becomes
an open issue [22]. Another issue that is generally acknowl-
edged in numerical analysis literature is the mesh sensitivity
of results obtained using material models similar to the cur-
rent one. This is usually overcome by performing a conver-
gence study as part of the numerical investigation. Due to
these known issues, multiple simulations are performed
using different mesh sizes and different values of the dam-
Table 1
Properties and parameters of T800H/3900-2 Epoxy and E-glass/Epoxy materi

Vf (GPa) _eo (s�1) Eo1 (GPa) m1

T800H/3900-2 Epoxy 0.51 1 � 10�3 294 0
E-glass/Epoxy 0.43 1 � 10�4 74 0

r2t (MPa) r2c(MPa) Go12 (GPa) a

T800H/3900-2 Epoxy 400 255 20 0
E-glass/Epoxy 80 255 30 0

Vf5 bt bc e5

T800H/3900-2 Epoxy 0.200 1.36 1.00 0
E-glass/Epoxy 0.020 1.00 1.00 0

n q Xmax (MPa) S

T800H/3900-2 Epoxy 0.50 140 114 7
E-glass/Epoxy 0.90 210 48 1
age parameters mf1, mf2, ms, and md to analyze the predic-
tive capability of the current model.

First, the following fixed values are assumed for the
material parameters: S = 1.0;mf1 = 20; mf2 = 20; ms = 6
and simulations are run using FE models with varying
mesh sizes. Delamination failure is de-activated in these
cases. Full FE models, similar to the one shown in
Fig. 3, with one layer of elements per lamina are used to
simulate the impact event. The full laminate, all twenty
four plies of it, is modeled using solid elements for all the
simulations performed as part of this example since it does
not possess any geometric symmetry (due to the presence of
+/�45� plies) or periodicity that can be exploited in creat-
ing simpler equivalent FE models. The contact force–time
history and the back-face fiber damage predicted by the
coarsest and the finest FE models are shown in Figs. 4
and 5, respectively, along with the experimental results.
As seen in Fig. 4, the contact force history predicted by
both these models agrees very well with the experimental
result. However, not surprisingly, there is significant differ-
ence in the predicted back-face fiber damage with mesh
refinement, as seen in Fig. 5. The meshes are successively
als used in verification examples

2 Xt (MPa) Xc (MPa) E2 (GPa) m23

.25 5490 1600 19.6 0.25

.25 3500 1600 4.93 0.25

f4 G23 (GPa) e4m Vf4 aG (GPa)

.010 7.26 0.14 0.100 0.80

.011 1.97 0.15 0.014 0.90

m Em (GPa) mm Do (s�1) Zo (MPa)

.14 3.50 0.34 1 � 106 1070

.15 3.00 0.4 1 � 105 240

3t (MPa) S230 (MPa) S310 (MPa) / (�)

9 86 64 20
00 86 64 20



Fig. 3. Example of a FE model used for simulation of a 33.4 J impact on a [45/90/�45/0]3S T800H/3900-2 CFRP laminate – (a) full model and (b) close-
up view of laminate.

Fig. 4. Contact force–time history predicted by the current model for a
33.4 J impact on a [45/90/�45/0]3S T800H/3900-2 CFRP laminate using a
coarse mesh and a fine one.
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refined until there is no significant difference in the pre-
dicted back-face fiber damage.

Next, simulations are run using the finest model for dif-
ferent values of the damage parameters and again the con-
tact force–time history and back-face fiber damage
predicted by the model are compared to the experimental
result. Figs. 6 and 7 show the results predicted for the fol-
lowing cases along with the experimental result:

(a) mf1 = 2; no transverse failure; no shear failure; no

delamination.
(b) mf1 = 20; no transverse failure; no shear failure; no
delamination.

(c) mf1 = 20; mf2 = 2; no shear failure; no delamination.
(d) mf1 = 20; mf2 = 20; no shear failure; no delamination.
(e) mf1 = 20; mf2 = 20; ms = 2 (as = 2.25); no

delamination.
(f) mf1 = 20; mf2 = 20; ms = 6 (as = 1.3); no

delamination.
(g) mf1 = 20; mf2 = 20; ms = 6 (as = 1.3); md = 2.

In general, the parameter mf1 is found to exert the max-
imum influence on the predicted results. There is a signifi-
cant drop in the contact force and also a significant
increase in the number of failed elements when this param-
eter is increased from its lowest value (ductile behavior) to
its highest value (brittle behavior). Influence of the other
parameters is found to be minimal on the predicted contact
force. With the various approximations vis-à-vis boundary
conditions, approximate values in the constituent proper-
ties, reduced integration in the solid elements, etc. made
in the simulations, the current model still yields a reason-
ably accurate contact force–time history. Fig. 7 shows that
all the parameters considered exert noticeable influence on
the predicted back-face fiber damage. The best result is
obtained for case (f) which is a combination of the highest
values of the constituent parameters considered and no
delamination. The predicted back-face fiber damage in this
case matches closely with the experimental result. When
through-the-thickness stiffness reduction due to delamina-
tion is also accounted for, the number of failed elements



Fig. 5. Back-face fiber damage predicted by the current model for a 33.4 J impact on a [45/90/�45/0]3S T800H/3900-2 CFRP laminate: (a and b)
experiment (picture taken from Williams and Vaziri [7]), (c) coarse mesh and (d) fine mesh.

Fig. 6. Contact force–time history predicted by the current model for a
33.4 J impact on a [45/90/�45/0]3S T800H/3900-2 CFRP laminate using a
fine mesh for different values of the damage parameters.

Fig. 7. Back-face fiber damage predicted by the current model for a 33.4 J

impact on a [45/90/�45/0]3S T800H/3900-2 CFRP laminate using a fine
mesh for different values of the damage parameters (pictures of experi-
mental results are taken from Williams and Vaziri [7]).
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reduces considerably. These results point to one of the
major challenges in developing numerical models for FE
simulations of composites with failure. The various failure
modes cause a complex re-distribution of stresses which
has to be captured reasonably by the models. Aside from
this fact, Fig. 7 shows that the current model is capable
of closely predicting the back-face fiber damage.

7.2. Impact of 0/90 symmetric E-glass/Epoxy laminate plates

This example involves simulations of impact of 0/90
symmetric E-glass/Epoxy laminated plates with incident
energy of 27 J. The plates are circular with diameter
200 mm, thickness 1.8 mm, and are made by stacking 10
unidirectional plies with different orientations which are
noted [0n/90m/0n], where 2n + m = 10 with n = 2, 3, 4.
Details of the drop-weight set-up and experimental results
are given in [1]. The impact is applied at the center of the
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plate by a cylindrical projectile with a hemispherical end of
mass 2.3 kg, density 7.8 kg/m3, length 600 mm, diameter
25 mm, and having the following properties: E = 210
GPa, m = 0.3. The plates are clamped on their periphery
over a 20 mm wide ring and a uniform pressure is applied
on the ring by means of springs.

The FE model used for simulations is shown in Fig. 8.
As shown in the figure, only a quarter of the experimen-
tal set-up is modeled due to symmetry to reduce the
computational effort. Each lamina is modeled using a
single layer of solid elements. The support is completely
constrained at the bottom to make it rigid while the ring
is constrained not to move in the vertical Z-direction to
account for the pressure applied on it. The latter bound-
ary condition is used since the value of the uniform pres-
sure applied on the springs in the experiments is not
given in Ref. [1]. As the following results show, this
assumption is found to be sufficient in this case. The
impactor is treated as rigid and only the contact surface
of the hemispherical end is modeled using shell elements.
Eroding surface-to-surface contact is defined between the
impactor and the plates and automatic surface-to-surface
contact is defined between the support and the plates and
also between the ring and the plates. The constituent
properties and parameters used in the simulations are
given in Table 1. Similar to the previous example, some
of the required material properties and parameters which
are not available in [1] are either obtained from literature
[11,15] or valid estimates are used.
Fig. 8. FE model used for FE simulation of a 27 J impact on [0n/90m/0n], n =
laminate.
The contact force–time history and the delamination
area predicted by the model are compared to experimental
results. Since only a quarter model is used in the simula-
tions, the contact force obtained is quadrupled for compar-
ison with the experimental result. Similarly, the
delamination area predicted by the model is shown on full
plates by reflecting the results about the symmetry planes
to make comparisons with the experimental results easier.
Mesh sensitivity study is not done but two different meshes
are used. First, a sufficiently fine mesh is used to study the
variation of predicted results with the damage parameters
mf2, ms, and md. Damage parameter mf1 is not considered
in this study as there is no report of any fiber breakage
in the reference paper [1]. Then, based on the observations,
a finer mesh is used to check the effect of the scale factor S.
Figs. 9–11 show the contact force–time history predicted by
the model for different values of the damage parameters
considered for the three different configurations. The pre-
dicted contact force history is found to be independent of
the damage parameters considered for all the three lami-
nates. Contact forces obtained for the [02/906/02] laminate
are found to be the closest to its experimental result. Peak
force predicted for the [03/904/03] laminate is found to be
about 7.1% higher than the experimental value while it is
greater by less than 2% for the other two laminates. In
all the three laminates, while there is good agreement
between the predicted and experimental values in the load-
ing part, the former are relatively much higher in the
unloading part suggesting that the model predicts stiffer
2, 3, 4, E-glass/Epoxy laminates – (a) full model and (b) close-up view of



Fig. 9. Contact force–time history predicted by the current model using
different values of damage parameters mf2,ms, and md for a 27 J impact on
a [02/906/02] E-glass/Epoxy laminate.

Fig. 10. Contact force–time history predicted by the current model using
different values of damage parameters mf2, ms and md for a 27 J impact on
a [03/904/03] E-glass/Epoxy laminate.

Fig. 11. Contact force–time history predicted by the current model using
different values of damage parameters mf2, ms and md for a 27 J impact on
a [04/902/04] E-glass/Epoxy laminate.
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behavior during unloading. Part of the reason for these
inaccuracies can be attributed to the assumed properties
for the constituents and the approximate boundary condi-
tions. Overall, the predicted contact force history is found
to agree reasonably well with the experimental result in
each case.

Next, results of delamination area predicted by the cur-
rent model in the three laminates are considered. In the
experimental studies, the damaged specimens were visually
inspected after impact for damage. Two butterfly wing-
shaped delamination areas were observed at the interface
between the 90� layer farthest from the impact point and
the 0� layer below it, as shown in Figs. 18–20. It is to be noted
here that delamination is not modeled explicitly in the cur-
rent model but by using a CDM based approach. Therefore,
it is predicted in the current simulations in the form of dam-
aged elements at the center of the 90� layer farthest from the
impact point whose through-the-thickness stress compo-
nents are softened as discussed in the section on failure. Spe-
cifically, it is predicted in elements at the center of the third,
fourth, and fifth layers from the bottom in the [02/906/02],
[03/904/03], [04/902/04] laminates, respectively.

Visual inspection of the damaged laminates in the exper-
iments in [1] also revealed longitudinal matrix cracks going
through the thickness of a layer in addition to delamina-
tion,. The first cracks visible to the naked eye were of a
bending type in the unimpacted 0� layers due to rupture
of the matrix and were followed by cracking in 90� layers
and delamination, at the interface between two cracked
layers. It was not possible to separate the appearance of
the first cracks in 90� layers and delamination. The 90�
layer cracks were shear cracks due to debonding of fiber/
matrix interfaces. These observations point to two very sig-
nificant characteristics of delamination: (1) it occurs when
the layers on each side of the interface are locally cracked
[1] and (2) the importance of a precise numerical represen-
tation of matrix cracking cannot be under-estimated [1].

Based on these observations and also the reason stated
in the previous example, impact of the three different lam-
inates is simulated for the following sets of damage
parameters:

(a) no shear damage; mf2 = 20; md = 2.
(b) ms = 6 (as = 1.3); no transverse damage; md = 2.
(c) ms = 2 (as = 2.25); mf2 = 20; md = 2.
(d) ms = 6 (as = 1.3); mf2 = 20; md = 2.
(e) ms = 10 (as = 1.2); mf2 = 20; md = 2.



Fig. 13. Evolution of damage function d5 with transverse shear strain.

Fig. 14. Evolution of damage function dlam with damage threshold (Eq.
(42)).

A. Tabiei, S.B. Aminjikarai / Composite Structures 88 (2009) 65–82 77
(f) ms = 6 (as = 1.3); mf2 = 2; md = 2.
(g) ms = 6 (as = 1.3); mf2 = 10; md = 2.
(h) ms = 6 (as = 1.3); mf2 = 20; md = 4.
(i) ms = 6 (as = 1.3); mf2 = 20; md = 6.

Scale factor S is taken to be equal to 1.0 in all these
cases. Three different values of each of the damage param-
eters mf2, ms, and md are tested along with two special
cases: (a) no shear damage and (b) no transverse damage.
As discussed earlier, delamination is preceded by bending
and shear type cracks in layers on either side of the inter-
face. Hence, these special cases are chosen to analyze the
role of transverse and shear damage functions in the cur-
rent material model.

Evolution of the corresponding damage functions for
the different values chosen are shown in Figs. 12–14. Dam-
age values are plotted against strains for transverse, and
shear modes and against the threshold function for delam-
ination. In general, smaller exponents for constituent dam-
age functions lead to an early initiation of damage and
ductile behavior while higher values lead to a later initia-
tion of damage and brittle behavior. Specific values of
parameter as and ms are chosen so that shear damage initi-
ates at different strains and the damage function reaches
almost zero at the ultimate failure strain of the matrix
material. As seen in Fig. 13, shear damage evolution for
ms = 2 and as = 2.25, starts early at a strain of about
0.5% and the shear moduli are reduced in a very ductile
manner to close to zero at the ultimate shear strain value
of 15%. At higher values of ms and the corresponding as

values, damage initiates at higher values and moduli reduc-
tion is less ductile. The delamination exponent does not
control the initiation of delamination but only the post-
failure degradation rate, which again increases with the
exponent value, since the damage threshold has to reach
a minimum value of 1 before the through-the-thickness
stiffness are reduced. The delamination areas predicted in
the various cases for the different laminates are shown in
Figs. 15–17 and the results are discussed in the following
sections. Incorrect results are predicted in some cases as
Fig. 12. Evolution of damage function d2 with transverse normal strain.
discussed in the following sections and these are not shown
in the figures.

7.3. Dependence of delamination area prediction on shear

damage function – comparison of cases (a), (c), (d) and (e)

Without a separate damage function to account for
matrix cracking (no shear damage case), the model still pre-
dicts delamination in all the laminates but it is predicted in
the wrong layers. There is no specific pattern in the layers
in which it is predicted but in general, it initiates in ele-
ments in which the through-the-thickness strains reach a
combined value for which the damage threshold function
is greater than 1 and then propagates to their neighboring
elements. The fact that incorrect results are obtained in all
the laminates for the ‘‘no shear damage” case clearly show
that the delamination criterion used in the current model
cannot predict delamination correctly if matrix cracking
is not accounted for in the model.

With the shear damage function, delamination is pre-
dicted at the correct location for all the three values of
ms in the [04/902/04] laminate while it is predicted in the



Fig. 15. Delamination areas predicted by the current model at the center of the third layer from bottom for a 27 J impact on a [02/906/02] E-glass/Epoxy
laminate.
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wrong layers in the other two laminates for ms = 2
(as = 2.25), similar to the ‘‘no shear damage” case. In all
laminates, the predicted delamination area decreases with
increase in ms indicating that the strain at which this dam-
age mode is activated also plays a crucial role in the delam-
ination prediction.

In general, these results indicate that a damage function
that accurately captures the matrix cracking behavior of
the composite, specifically the initiation and evolution of
this damage mode, is crucial for accurate prediction of
delamination using the criterion employed in the current
model. Since the best results are obtained in the current
model using ms = 6 (as = 1.3), this value is used in the sim-
ulations to study the variation of predicted delamination
area with the other two damage parameters.

7.4. Dependence of delamination area prediction on

transverse damage function – comparison of cases (b), (d),
(f) and (g)

When the transverse failure mode is de-activated, the
model predicts delamination in the correct layers for the
[03/904/03], and the [04/902/04] laminates but not for the
[02/906/02]. Also, the predicted delamination area increases
considerably with increase in mf2 in the [02/906/02] laminate
while there is very minimal change in the other two lami-
nates. These results show that the transverse damage func-
tion plays a significant role in the delamination prediction
using the criterion employed in the current model in the
[02/906/02] laminate but not in the other two. The signifi-
cant influence of the transverse damage function in the
[02 /906/02] laminate can be attributed to the location of
the delaminating interface. As the interface is moved far-
ther from the mid-plane of the laminate, tensile strains in
the layers on either side of the interface are considerably
higher and the transverse shear strains are lower leading
to this mode exerting more influence than the shear damage
mode which is more influential as the interface is moved
closer to the mid-plane. These results again show that the
CDM based delamination criterion is not capable of pre-
dicting delamination correctly in all laminates and needs
to be aided by other modes in a numerical model.

7.5. Dependence of delamination area prediction on through-

the-thickness stiffness degradation exponent md – comparison

of cases (d), (h) and (i)

As mentioned earlier, the exponent md controls only the
rate of degradation after delamination is predicted in an
element. In the [02/906/02] and [03/904/03] laminates, delam-
ination is additionally predicted in elements between the
two butterfly wing-shaped areas also for higher values of
the exponent but there is no significant increase in the pre-
dicted area. In the [04/902/04] laminate, there is no change
observed in the predicted area. These results indicate that
the delamination failure degradation exponent does not
play any significant role in the prediction of delamination
area using the current model.



Fig. 16. Delamination areas predicted by the current model at the center of the fourth layer from bottom for a 27 J impact on a [03/904/03] E-glass/Epoxy
laminate.
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7.6. Dependence of delamination area prediction on scale

factor S

As mentioned earlier in the description of the delamina-
tion failure criterion, the scale factor S is originally intro-
duced by Yen [18] to better correlate the predicted
delamination area with experiments. Since the predicted
delamination areas in the coarse mesh with S = 1.0 are
almost as wide as the finer mesh region, a new FE model
is created with a finer mesh in a larger region of the lami-
nate close to the impact point and tested with the parame-
ter values in case (i) given earlier and values of S = 1.0,
1.1, and 1.2. For S = 1.0, the delamination areas predicted
using the finer mesh are found to be marginally more than
the corresponding ones obtained earlier using the coarse
mesh for all three laminates. For the other two values how-
ever, contrary to expectation, the results obtained are
incorrect in all but one case with delamination being pre-
dicted in the wrong layers similar to the ‘‘no shear damage
case” discussed earlier. Even in the one case in which loca-
tion of the predicted area is correct, S = 1.1 for the [03/904/
03] laminate, there is no increase in the predicted area indi-
cating that the scale factor does not play its intended role in
the current model.

Finally, Figs. 18–20 show the maximum delamination
areas predicted by the current model for the three lami-
nates along with the experimental results. These results
are obtained using the finer FE model with the parameter
values in case (i) given earlier and S = 1.0. The predicted
delamination areas are much lesser than the experimental
results with the widths in particular being much lesser. Sim-
ilar to the experimental results, however, the widths of the



Fig. 17. Delamination areas predicted by the current model at the center of the fifth layer from bottom for a 27 J impact on a [04/902/04] E-glass/Epoxy
laminate.

Fig. 18. Experimental and maximum predicted delamination areas at the center of the third layer from bottom for a 27 J impact on a [02/906/02] E-glass/
Epoxy laminate: (a) experiment (picture taken from Li et al. [6]); (b) current model with S = 1.0; mf1 = 2; mf2 = 20; ms = 6; md = 6.
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predicted delamination areas increase with increase in the
number of 90� layer.

Delamination modeling approaches using a one-off
stress-based failure criteria similar to the one used in the
current model have also been used in similar efforts in
the past, e.g. [1,18,23,24,26]. Although it was partially suc-
cessful in some limited cases, its applicability to predict
delamination damage remains unjustified [25] since the
stress field is redistributed at the onset of delamination.
Davies and Zhang [26] tried to employ the stress-based cri-



Fig. 19. Experimental and maximum predicted delamination areas at the center of the fourth layer from bottom for a 27 J impact on a [03/904/03] E-glass/
Epoxy laminate: (a) experiment (picture taken from Li et al. [6]); (b) current model with S = 1.0; mf1 = 2; mf2 = 20; ms = 6; md = 6.

Fig. 20. Experimental and maximum predicted delamination areas at the center of the fifth layer from bottom for a 27 J impact on a [04 /902/04] E-glass/
Epoxy laminate: (a) experiment (picture taken from Li et al. [6]); (b) current model with S = 1.0; mf1 = 2; mf2 = 20; ms = 6; md = 6.
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terion to predict the delamination sizes. Their conclusion is
that it has clearly little relevance with reality except per-
haps for the initial damage in the thinner plates, but only
at the onset [5]. The results discussed here also lead to
the same conclusion that the approach used in this model
can at best be used as a preliminary test to check for initi-
ation of delamination in laminates and determine potential
sites and rough shapes but cannot give any realistic esti-
mates of actual delamination area.
8. Summary and conclusions

A micro-mechanical model has been developed for uni-
directional polymer matrix composites and implemented in
the FE software LS-DYNA. It is well suited for impact
loading conditions as it accounts for two important attri-
butes of their mechanical behavior that is crucial for accu-
racy of such simulations namely strain-rate dependency
and progressive post-failure behavior. Strain-rate depen-
dency is incorporated by using viscoplastic constitutive
relations based on a state variable approach for the resin
constituent. Progressive post-failure behavior is modeled
using a CDM based damage model. Different damage
functions are used for various failure modes such as fiber
failure, matrix cracking, and delamination and the
response of the composite is softened according to the fail-
ure mode.

Though numerous micro-mechanical models have been
developed in the past for modeling the behavior of unidi-
rectional polymer matrix composites, there are very few
that consider their progressive post-failure and even fewer
that account for their strain-rate dependent behavior. Also,
an extensive literature search did not reveal even a single
one that accounts for delamination failure. The fact that
the current micro-mechanical model has all these fore-men-
tioned features makes it a unique one. The model’s predic-
tions are validated by using it to simulate impact events for
which experimental results are available in literature and
comparing the predicted and experimental results. Contact
force–time histories and fiber failure predicted by the
model are found to agree very well with experimental
results. However, delamination area is highly under-pre-
dicted indicating that the model can be used only as a pre-
liminary test to check for delamination initiation and
potential delamination sites.

Overall, the model is found to predict quite realistic
results for impact simulations of unidirectional composite
structures. However, as mentioned in Williams and Vaziri
[7], there are a number of issues that need to be addressed
in the CDM based damage model such as physical signifi-
cance of the choice of damage parameters, and their depen-
dence on mesh size and strain-rate to extend the
effectiveness of this model. Also, a fracture mechanics
approach may be more appropriate to model delamination.

References

[1] Collombet F, Lalbin X, Lataillade JL. Impact behavior of laminated
composites: physical basis for finite element analysis. Compos Sci
Technol 1998;58:463–78.

[2] Abrate S. Impact on laminated composite materials. Appl Mech Rev
1991;44(4):155–90.

[3] Abrate S. Impact on laminated composites: recent advances. Appl
Mech Rev 1994;47(11):517–44.

[4] Cantwell WJ, Morton J. The impact resistance of composite materials
– a review. Composites 1991;22(5):347–62.



82 A. Tabiei, S.B. Aminjikarai / Composite Structures 88 (2009) 65–82
[5] Li CF, Hu N, Yin YJ, Sekine H, Fukunaga H. Low-velocity impact-
induced damage of continuous fiber-reinforced composite laminates.
Part I. An FEM numerical model. Compos Part A: Appl Sci Manuf
2002;33:1055–62.

[6] Li CF, Hu N, Cheng JG, Fukunaga H, Sekine H. Low-velocity
impact-induced damage of continuous fiber-reinforced composite
laminates. Part II. Verification and numerical investigation. Compos
Part A: Appl Sci Manuf 2002;33:1063–72.

[7] Williams KV, Vaziri R. Application of a damage mechanics model for
predicting the impact response of composite materials. Comput Struct
2001;79:997–1011.

[8] Hallquist JO. LS-DYNA theory manual. Livermore: Livermore
Software Technology Corporation (LSTC); 2006.

[9] Matzenmiller A, Lubliner J, Taylor RL. A constitutive model for
anisotropic damage in fiber-composites. Mech Mater
1995;20(2):125–52.

[10] Van Hoof J, Woeswick MJ, Straznicky PV, Bolduc M, Tylko S. In:
Proceedings of the fifth international LS-DYNA users conference;
1998.

[11] Goldberg R. Strain-rate dependent deformation and strength mod-
eling of a polymer matrix composite utilizing a micro-mechanics
approach. NASA/TM-1999-209768; 1999.

[12] Tabiei A, Yi W, Goldberg R. Non-linear strain-rate dependent micro-
mechanical composite material model for finite element impact and
crashworthiness simulation. Int J Non-Linear Mech 2005;40:957–70.

[13] Pecknold DA, Rahman S. Micromechanics based structural analysis
of thick laminated composites. Comput Struct 1994;51(2):163–79.

[14] Tabiei A, Chen Q. Micromechanics based composite material model
for crashworthiness explicit finite element simulation. J Thermoplast
Compos Mater 2001;14:264–89.

[15] Tabiei A, Ivanov I. Micro-mechanical model with strain-rate depen-
dency and damage for impact simulation of woven fabric composites.
Mech Adv Mater Struct 2007;14(5):365–77.
[16] Goldberg RK, Stouffer DC. Strain rate dependent analysis of a
polymer matrix composite utilizing a micromechanical approach. J
Compos Mater 2002;36(7):773–93.

[17] Aminjikarai SB, Tabiei A. A strain-rate dependent 3-D microme-
chanical model for finite element simulations of plain weave
composite structures. Compos Struct 2007;81(3):407–18.

[18] Yen CF. Ballistic impact modeling of composite materials. In:
Proceedings of seventh international LS-DYNA users conference,
Dearborn, Michigan; 2002. p. 6.15–.26.

[19] Delfosse D, Poursartip A. Experimental parameter study of static and
dynamic out-of-plane loading of CFRP laminates. In: Poursartip A,
Street KN, editors. Proceedings of the tenth international conference
on composite materials (ICCM/10). Whistler: Woodhead Publishing;
1995. p. 583–90.

[20] Delfosse D, Poursartip A. Energy-based approach to impact damage
in CFRP laminates. Composites 1997;28A:647–55.

[21] Delfosse D, Poursartip A, Coxon BR, Dost EF. Non-penetrating
impact behavior of CFRP at low and intermediate velocities. In:
Martin RH, editor. Composite materials: fatigue and fracture, ASTM
STP 1230. Philadelphia: ASTM; 1995. p. 333–50.

[22] Xiao JR, Gamma BA, Gillespie Jr JW. Progressive damage and
delamination in plain weave S-2 glass/SC-15 composites under quasi-
static punch-shear loading. Compos Struct 2007;78(2):182–96.

[23] Choi HY, Chang FK. A model for predicting damage in graphite/
epoxy laminated composites resulting from low-velocity impact. J
Compos Mater 1992;26:2134–69.

[24] Hou JP, Petrinic N, Ruiz C, Hallett SR. Prediction of impact damage
in composite plates. Compos Sci Technol 2000;60:273–81.

[25] Wang H, Vu-Khanh T. Fracture mechanics and mechanisms of
impact-induced delamination in laminated composites. J Compos
Mater 1995;29:156–78.

[26] Davies GAO, Zhang X. Impact damage prediction in carbon
composite structures. Int J Impact Eng 1995;16:149–70.


	A strain-rate dependent micro-mechanical model with progressive post-failure behavior for predicting impact response of unidirectional composite laminates
	Introduction
	Micro-mechanical model
	Viscoplastic constitutive relations for matrix material
	Constitutive relations for fibers
	Progressive failure model
	Damage evolution in constituents
	Delamination

	Stress calculations
	Numerical results and discussion
	Impact of CFRP plates made of T800H/3900-2 fiber/resin system
	Impact of 0/90 symmetric E-glass/Epoxy laminate plates
	Dependence of delamination area prediction on shear damage function - comparison of cases (a), (c), (d) and (e)
	Dependence of delamination area prediction on transverse damage function - comparison of cases (b), (d), (f) and (g)
	Dependence of delamination area prediction on through-the-thickness stiffness degradation exponent md - comparison of cases (d), (h) and (i)
	Dependence of delamination area prediction on scale factor S

	Summary and conclusions
	References


