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This paper deals with high cycle fatigue delamination in composite materials. The cohesive zone
approach along with the level set method is used to simulate fatigue-driven delamination growth. The
cohesive zone method is used for calculation of the energy release rate at the crack front because of
its superiority over the virtual crack closure technique (VCCT) for bi-material interfaces and non self-
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set method. The damage variable in the cohesive zone formulation is changed according to the updated
level set field. Benchmarks are used to evaluate the performance of the proposed approach in simulation
of 3D delamination growth under fatigue loading.
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1. Introduction

Delamination is the separation of plies and is one of the most
detrimental modes of failure in the composite materials. Delami-
nation can be initiated by cyclic loading, impact, stresses near free
edges, manufacturing defects like incomplete wetting or the pres-
ence of transverse matrix cracks. Delamination can grow under
fatigue loading and lead to reduction of stiffness, lowering of crit-
ical buckling load and complete failure of the structure. Accurate
modeling of delamination growth under fatigue loading is essential
to safe design of composite structures exposed to cyclic loading
such as wind turbine blades and aircraft wings.

For the case of small-scale yielding at the crack front, Paris
equation has been successfully used to describe crack growth
under cyclic loading. First proposed by Paris et al. [1,2], this equa-
tion is usually presented in terms of either stress intensity factor or
energy release rate:

da AG\™
a<(c) W
where C and m are material parameters which depend on the load-

ing mode, G, is the critical energy release rate which is also depen-
dent on the mode ratio and AG is the cyclic range of energy release
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rate. The variable a signifies the crack length and N is the number of
cycles. Although this equation was initially used for metals, it has
been successfully applied to the laminated composites too [3,4].

As it is shown in Eq. (1) the calculation of the range of energy
release rate AG is required at the crack front. The virtual crack clo-
sure technique (VCCT) is often used in metals for calculation of this
parameter. However for bi-material interfaces the assumption of
linear elasticity leads to oscillatory singular fields at the crack
tip. This makes the application of fracture mechanics methods like
VCCT far more complex [5]. Moreover VCCT is not very efficient for
crack growth analysis, especially in cases with non self-similar
crack growth since the elements need to be aligned with the crack
front. Remeshing after a step of crack growth is usually required.
This makes the simulation process time-consuming and compli-
cates automation.

In this paper, the cohesive zone method is used to calculate the
energy release rate. The cohesive zone concept was first introduced
by Dugdale [6] and Barenblatt [7] and since then this method has
been successfully used to model fracture in adhesive joints [8,9],
bi-material interfaces [10,11] and laminated composites [12,13].
In the cohesive zone method, fracture is modeled by use of a non-
linear constitutive relation called the traction-separation law. This
law provides a relation between the separation of two interfaces
and the traction that opposes this separation. If the separation

exceeds a limit called the final separation A’, the traction will be
reduced to zero and the crack advances. The traction-separation
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law is implemented in the finite element framework by use of the
interface elements. A more detailed discussion of this model is pre-
sented in the next section.

The cohesive zone method has been mainly used for the simu-
lation of crack growth under monotonic loading. Foulk et al. [14]
were among the first researchers who extended the cohesive zone
method for modeling fatigue crack growth. They achieved this by
adding an unloading/reloading path to the Tvergaard’s traction-
separation law [15]. Several other fatigue models based on the
cohesive zone concept have been proposed [16-19]. However
these models are more suited for the cycle by cycle analysis and
can result in high computational costs in high cycle fatigue
simulations.

More recently alternative cohesive zone based models more
suited for high cycle fatigue have been proposed by different
researchers [20-22]. These models propose phenomenological
relations for the growth of the damage parameter in the traction-
separation law. As this damage parameter grows, the stiffness of
the interface reduces. These damage growth models have some
material parameters which need to be determined by means of
experiments. Other researchers [23-25] have tried to link the dam-
age growth to the Paris law. This link helps to avoid introduction of
additional material parameters apart from the already well known
Paris law parameters.

However, there is a difficulty in linking the damage mechanics
from a cohesive law to the fracture mechanics of Paris law. In
the cohesive law, the energy release rate is defined as the area
under the complete traction separation curve. Fatigue cohesive
laws have been proposed [23,24], that accelerate damage develop-
ment based on estimation of the energy release rate. However, dur-
ing damage development, the final shape of the traction-separation
curve and consequently, the energy release rate are yet unknown.
Kawashita and Hallett [25] have presented an alternative approach
where fatigue degradation is only applied in the element at the
crack tip. Upon mesh refinement, this leads to a model where the
local fatigue degradation is applied suddenly. A vertical drop in
traction is approached. This implies that the complete area under
the curve is known at the moment that fatigue damage is applied.
For a 2D scenario, where there is a single crack tip element, this
works very well. However, in 3D it involves a crack tip tracking
algorithm and estimation of the direction of crack propagation.

As an alternative to cohesive zone modeling, Latifi et al. [26]
have shown that using a level set approach is very suitable for fati-
gue analysis. Unlike cohesive laws which deal with local damage
development, the level set method deals with velocity of a front,
which allows for a direct link with a crack growth rate. In [26],
the model is a pure fracture mechanics approach without cohesive
zone, but with dedicated element formulation. The model is lim-
ited to thin structures and so far only applicable to single delami-
nation. The present paper combines ideas from Kawashita and
Hallett [25] and the level set method. The level set method takes
care of describing and updating the crack front location, while
the cohesive law provides the estimate for the energy release rate.
The cohesive law works exactly as the static cohesive law until the
level set front passes the integration point. When the front passes
an integration point, the damage is set to 1 in that point. This way,
a true vertical drop in traction is achieved irrespective of element
size.

In the following sections first the basic formulation of the cohe-
sive zone method is presented. Then the level set method and its
implementation for triangular elements are reviewed and the pro-
posed approach for simulation of delamination growth is dis-
cussed. Finally two benchmark cases are modeled to investigate
the performance of the method both in calculation of the energy
release rate and in tracking the crack front evolution in 3D.

2. Formulation
2.1. Cohesive zone method

The traction-separation law is implemented in the finite ele-
ment framework by using the interface elements. Different consti-
tutive formulations have been proposed [11,27-34], among which
the bi-linear traction-separation law is the most common one
because of its simple shape. In this law an initial stiffness is intro-
duced which ensures the stiff connection between interfaces
before the damage initiation. Therefore it contains an initial linear
elastic part and a softening part. The shape of the traction-
separation law is shown in Fig. 1, where K is the initial stiffness
of the interface, T° is the strength and G, is the fracture energy.

In this paper the quasi-static constitutive formulation pre-
sented by Turon et al. [28] is used as a starting point. A 3D element
with two triangular faces and total number of 6 nodes is imple-
mented in ABAQUS using the user-element subroutine UEL.

The bi-linear traction-separation law can be written as follows:

T; = KA ifo<igA°
Ti=(1—dKA; if A’ <i< A 2)
Ti=0 if Af<a

where i shows the mode of loading, T is traction, A is the separation
of interfaces and K is the penalty stiffness. In this equation 1, A°, AY
and d are the equivalent separation, initial separation, final separa-
tion and damage in mixed-mode respectively. The equivalent sepa-
ration / is the Euclidean norm of the separation components and is
calculated as follows:

2= \(AY + AL+ A2 (3)

where () is Macaulay brackets. The damage variable d has the fol-
lowing relation with other traction-separation law parameters:

_ Af(;“;wx — AO)
=5 (4)
j'mux(A -A )
where 7}

= l1)1<1[a<x{)v(t)} and 7 is the time at which d is calculated.
<I<T

max

The energy release rate is defined as the total work done per
unit area for the complete failure of the material point. This value
can be obtained by integrating the complete failure path in the
traction-separation response. In the damage models proposed by
Turon et al. [23] and Harper and Hallett [24], continuous increase
of the damage variable under cyclic loading leads to gradual loss
of stiffness in the interface. This increases the separation of the
interface as the fatigue damage accumulates which leads to a

A

AO

Fig. 1. Bi-linear traction-separation law.
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Fig. 2. (a) Non-vertical failure path (b) Vertical failure path.

non-vertical failure path (Fig. 2-a). The non-vertical failure path
means the complete failure response and the total dissipated
energy would be unknown at the moment t when the crack growth
rate is being calculated. Kawashita and Hallett [25] limited the
damage accumulation to the element adjacent to the crack tip.
As a result the loss of stiffness would happen only to a small part
of the interface and the failure path would be close to vertical. In
the limit case where the element size at the crack tip goes toward
zero, this path becomes completely vertical (Fig. 2-b). In this paper
a vertical path is achieved irrespective of the element size by set-
ting the damage variable equal to 1 at nodes which have been
passed by a moving front described with the level set method. At
the integration points adjacent to the front, the energy release rate
is known and can be obtained from the following relation:

2
GT—O{Af—u} (5)

The cyclic variation of energy release rate AG in Eq. (1) is
defined as:

AG = Gmax - Gmin (6)

By using the load ratio R, the cyclic variation of energy release
rate AG can be computed by using Gygx:

AG = (1 = R)Gax 7
using Eq. (5), AG can be written as follows:
2
T (A —dnw) >
AG?{A _W(l_R) (8)

For the mixed-mode loading A’ and A° are found using the fol-
lowing relations [28]:

'shear =shear

AO

8o = \/ (8) ((8%ew) " (25) ) (10)

where Agpeqr = \/A,z, + A,z” and Ggpeqr = Gy + Gy The parameter 7 is a

material constant which is found by experiment. The variable 8 is
defined as:

AN (AO AL, — AN ) i

A

9)

Gshear
_ 11
ﬁ GI + Gshear ( )

The fracture energy G. in mixed-mode loading is described with
the relation proposed by Benzeggagh and Kenane [35]:

Gc = Glc + (Gsheur.c - Glc)ﬁ’7 (12)

where subscript c is used to show critical energy release rate.

2.2. Level set method

The level set method is a robust tool to track the evolution of
moving fronts [36]. In this method the front location is represented
by a level set function and as the front moves this function evolves
in time. Knowing the velocity at different points of the front, a dif-
ferential equation for the level set function evolution can be
formed [37]:

o9

o +Vp-V=0 (13)
where ¢ is the level set function and V shows the velocity field. It is
beneficial to use a signed distance function as the level set function.
The absolute value of the signed distance function at each point
shows the shortest distance of that point to the crack front and
its sign shows on which side of the crack front the point is located.
In the proposed method, the front that is tracked is the crack front
that separates the partially damaged cohesive zone from the trac-
tion free crack. The positive sign is assigned to the uncracked side
and the negative sign to the cracked side (Fig. 3). When ¢ is a signed
distance function, V¢ is a unit vector and therefore:

Vo V=V, (14)

where V, is velocity value normal to the level sets of ¢ such as crack
front. Using forward Euler time discretization, the level set function
¢ after time At can be found from the following relation [38]:

Proac = @r — VaAt (15)

As was discussed in the previous section the energy release rate
is calculated at the nodes on the crack front by measuring the area
under the traction-separation curves. Since the level set method is
used, the crack front is not necessarily aligned with the element
boundaries and may pass through the elements. In this case, as
shown in Fig. 4, the integration of the traction-separation law will
be performed at the nodes of the elements cut by the crack front. A
Newton-Cotes integration scheme is used for the cohesive ele-
ments which means integration points and nodes are coincident.
Therefore values of the energy release rate can be readily calcu-

Fig. 3. Signed distance function and damage values in cracked domain.
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® Nodes for which G is computed
Elements cut by front

Fig. 4. Calculation of energy release rate at the crack front.

lated at nodes. After energy release rate values are obtained, crack
growth velocities at these nodes are found using Paris equation
(Eq. (1)). The crack growth rate da/dN is used as the velocity V,
required in the level set update equation (Eq. (15)). The time incre-
ment At in Eq. (15) is actually the number of cycles AN in fatigue
crack growth. This discretization in time in fatigue problems is
called the cycle jump. The cycle jump for any individual time step
is chosen using the following equation [23]:

Aamax

AN=—F—
max {4

(16)
where Agy,q is maximum amount of crack growth per time step and
is pre-established, while max {4} is the maximum value of the
crack growth rate computed along the crack front. Reducing the
value of Aan leads to more accurate results.

For updating the level set function ¢, the velocity V, should be
known throughout the domain. Here the fast marching method
[37] is used to extend the velocities from the crack front over the
whole domain of the interface. The method proposed in [39] is
used for extending velocities in triangular elements. In the ele-
ments where velocities at two nodes are known, the velocity at
the other node is found by solving the normality condition which
states that the velocity is constant in the direction normal to the
¢ level curves:

Vo VV, =0 (17)

If a node is connected to more than one element with known
velocities at two nodes, the element which is the most normal to
the level set will be used. This is the element with the highest value
of |[V¢ - VN;| where i shows the node with unknown velocity.

While ideally ¢, ,, will be obtained as a signed distance func-
tion, approximation introduced in numerical solution of Eq. (13)
will cause deviations. To ensure that the obtained level set function
at the next time step ¢, ,, is a signed-distance function, reinitial-
ization is performed. The reinitialized level set field will have the
same zero level curve as ¢, ,,. Reinitialization is performed by
solving the equation |V¢| = 1 by the fast marching method. On a
triangular element with two known nodal values, this is a quadra-
tic equation and the root with maximum absolute value will be
chosen. If a node is connected to multiple elements, the element
with minimum value for max{|¢;|,|¢,|} will be chosen, where j
and k are the nodes with known values of ¢.

After ¢, is found, the damage values at the nodes are calcu-
lated. For the nodes where ¢, ,, < 0 damage values are set to 1
(Fig. 5). These damage values will be read by the UEL subroutine
and therefore the new cracked region will be introduced to the
finite element model. The finite element model will be solved again

NN A9t + A =0
AN o(t) =0

® Nodes for which d =1 at ¢
e Nodes for which d is set to 1 at t + At

Fig. 5. Change of the damage values at the nodes as the front moves.

in the next time step with the new crack front and the above
described steps will be repeated. The steps of the described proce-
dure are shown in Fig. 6. ABAQUS is used for solving the finite ele-
ment model. The other tasks in the procedure are performed with a
Python code.

3. Results and discussion

In this section a 3D double cantilever specimen and a circular
delamination specimen are used to evaluate the performance of
the presented approach to simulate fatigue-driven delamination.
These two cases are loaded in mode I and mode II respectively.
The ability of the method to calculate the energy release rate accu-
rately and to track the crack front is tested.

3.1. 3D double cantilever beam specimen
To investigate the ability of the model to calculate the energy

release rate and track the crack front in 3D problems, a double can-
tilever beam specimen is modeled using cohesive elements. The

Solve the finite ~

element _I_n-(y

4

Calculate energy release rate at the crack front

\ 4

Calculate velocities using Paris equation

A 4

Find new crack location with level set method

A 4

Obtain damage values at nodes using level set values

Fig. 6. The steps of crack growth procedure.
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Fig. 7. 3D double cantilever beam specimen.

Table 1
Material properties of HTA/6376C carbon/epoxy [23,40,41].

Elastic constants Interface properties

Paris Law constants

Ei1; (GPa) 120 Gie (k]/m?)
Eyp = E33 (GPa) 10.5 Gie (KJ/m?)
Giz = Gy3 (GPa) 5.25 K (N/mm?3)
Go3 (GPa) 3.48 T? (MPa)
Viz = Vi3 0.3 T% (MPa)
V23 0.51 n

0.260 C; (mm/cycle) 0.0616
1.002 my 5.4
106 Cy (mm/cycle) 2.99
30 my 4.5

60

2.73

deformed finite element model of the specimen is shown in Fig. 7
with amplified deformations. The specimen has a total length of
20 mm with a delamination length of 10 mm. The specimen width
is 10 mm and each arm has a thickness of 0.5 mm. Moments of
equal values and opposite directions are applied to each arm while
the other end of the specimen is completely fixed. The material
properties for HTA/6376C carbon/epoxy are taken from
[40,41,23] and shown in Table 1. The laminate is considered to
be uni-directional where the fiber orientation is aligned with the
beam axis.

The finite element model as shown in Fig. 7 is made from ABA-
QUS continuum shell wedge elements (SC6R) and the user-defined
cohesive elements. Cohesive elements with zero thickness are
placed in the delamination plane and a fine mesh with the element
size of 0.1 mm is used ahead of the crack front to ensure that the
traction distribution in the cohesive zone is captured with good
accuracy. The cohesive zone is found as the region ahead of the
crack front where damage d has a nonzero value and material
points are in the softening zone (Fig. 1).

For the minimum number of elements in the cohesive zone dif-
ferent values have been suggested in the literature. Moés and
Belytschko [42] suggested the minimum number of 10 elements
in the cohesive zone, while Davila and Camanho [43] have used
3 elements in their analysis. Because of the small length of the
cohesive zone, even using 3 elements in the cohesive zone requires
a small element size. Turon et al. [44] have suggested the lowering
of the interfacial strength value T° to increase the length of the
cohesive zone and allow for the bigger elements. However as
shown in Fig. 8 too much lowering of the interfacial strength cre-
ates problems in capturing the high gradient of G near the free
edge. Because of the symmetry the energy release rate distribution
on only one half of the front is plotted. In what follows the value of

20 MPa is used for interfacial strength to ensure enough elements
exist in the cohesive zone. With this value, the cohesive zone spans
approximately 8 elements.

The crack front evolution for 15 steps with Adp. = 0.2 mm is
demonstrated in Fig. 9. To make sure that the accuracy is in an
acceptable range, a small value for the step size is chosen. Because
of the drop in the energy release rate value near the free edges
(Fig. 8) the initial straight line changes to a curved shape. As was
discussed in Section 2.2 when the level set function is updated
and the new crack front is found, damage values at the integration
points with the negative value of the level set function are set to 1
(Fig. 5). This will cause the crack front to fall inside the cut ele-
ments and be influenced by the shape of the element boundaries.
As a consequence oscillations may occur in the energy release rate
values computed at the nodes. These oscillations reduce by mesh
refinement and can be removed by applying a smoothing proce-
dure. Here the smoothing is applied each time the finite element
model is solved by ABAQUS and the energy release rate is obtained
at the nodes of elements that are cut by the front. Oscillations in
the energy release rate will be discussed in more detail in the next
example.

3.2. Circular delamination specimen

In this section another example is studied to investigate the
performance of the presented approach. A circular delamination
test with a central crack for mode II delamination is modeled
[45]. The position of the circular crack and the boundary conditions
are schematically shown in Fig. 10. With the depicted boundary
conditions the crack growth will be in mode II only. The specimen
has a radius of 20 mm, thickness of 1 mm and the radius of the ini-
tial crack is 5 mm. The material of the specimen is HTA/6376C car-
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Fig. 10. Circular delamination specimen.
bon/epoxy (Table 1). The laminate is made from two Table 2
[—45/90/45 /0], sublaminates. The initial crack is located between Homogenized material properties of HTA/6376C carbon/epoxy.
the two sublammates. Th{s'layup makes. the laminate and Fhe indi- E (GPa) N, Gre (KJ/m?) 19 (MPa)
vidual sublaminates quasi-isotropic which means that the in-plane
47.77 0.3 1.002 60

material properties can be homogenized. The homogenized prop-
erties are shown in Table 2. Paris equation material parameters C
and m for mode II are taken equal to 2.99 mm/cycle and 4.5
respectively.

The finite element model constructed for the circular delamina-
tion test is shown in Fig. 11. The load applied to the center of the
specimen is 400 N. Two rows of the ABAQUS continuum shell
wedge elements (SC6R) at above and below the delamination plane
are used. These elements follow the first-order shear deformation
theory and only have translational degrees of freedom. Between

these two rows, one layer of cohesive elements with zero thickness
is inserted. Although the model with homogenized laminate prop-
erties is axisymmetric and can be reduced to a 2D model, this will
not be favorable since the goal here is to investigate 3D crack
growth. However symmetry is used to only model a quarter of
the specimen. To capture the traction distribution accurately at
the crack front, a fine mesh is used. In the initial delaminated area
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Fig. 11. Finite element model of the circular delamination specimen.
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Fig. 12. Cohesive zone ahead of the crack front.

which represents a circle with radius of 5 mm no cohesive ele-
ments are used and contact is defined to prevent interpenetration.

As it is shown in the flowchart depicted in Fig. 6 the first step is
to solve the finite element model and calculate the energy release
rate at the crack front. The cohesive zone obtained from the finite
element solution of the model in the first step is shown in Fig. 12.

As shown in Fig. 4, the crack front may pass through elements
and is not necessarily aligned with the element boundaries. In
the elements that are cut by the crack front the damage value d
(Eq. (4)) in the nodes on the cracked sides is set to 1. This will cause
the crack front to fall somewhere inside the element and be
affected by the shape of the element boundaries. This may create
oscillations in the calculated energy release rate values. However
by reducing the element size the oscillations will decrease and
the solution will improve. Energy release rate values for a circular
crack with radius of 10 mm where the crack is no longer aligned
with the element boundary are shown in Fig. 13 for two mesh
sizes. The angle 0 in Fig. 13 is the angle with the x axis which is
aligned with the horizontal edge of the specimen in Fig. 12. As it
is seen in this figure oscillations have reduced for the smaller mesh
size. Besides reducing the element size, smoothing can also be used
for alleviating the oscillations. This will be discussed in more detail
in the next paragraphs. For obtaining the energy release rate by
VCCT a 2D axisymmetric model is made and ABAQUS’ own imple-
mentation of VCCT is used.

The energy release rate calculation and crack growth for an
elliptical crack is also examined. An elliptical crack with major axes
of 5 and 10 mm is inserted in the mid-plane of circular delamina-
tion specimen. As shown in Fig. 14 good agreement exists between
energy release rate values calculated using cohesive elements and
values obtained from VCCT. Because for the initial crack, element
boundaries are actually aligned with the crack front, the energy
release rate curve is smooth and no oscillations are present.
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Fig. 13. Energy release rate distribution along crack front.
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Fig. 14. Energy release rate at crack front.

As it is seen in Fig. 14 the maximum energy release rate value
occurs at 0 = 0. The size of the cycle jump AN is obtained by choos-
ing Adm. equal to 0.3 mm (Eq. (16)). A small value for Ad, is cho-
sen to ensure that the results have acceptable accuracy. The
damage values assigned to integration points after 3 steps of crack
growth are depicted in Fig. 15. The white area in Fig. 15 shows the
initial crack and the red area shows the crack extension. The finite
element model is solved using these damage values and energy
release rate along the new crack front is calculated. Obtained
energy release rate values for this step are plotted in Fig. 16. As

Damage
+1.000e+00

E +8.571e-01
+7.143e-01
+5.714e-01
+4.286e—01
+2.857e~01
+1.429e-01
+0.000e+00

Fig. 15. Damage values assigned to integration points.
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Fig. 16. Energy release rate at crack front.

Fig. 17. Crack front evolution.

it is seen in this figure oscillations exist in the energy release rate
values. As was discussed earlier the noise can be reduced by refin-
ing the mesh but also a smoothing procedure can be applied to
remove the oscillations. The smoothed curved is plotted in
Fig. 16. Here the Savitzky-Golay filter [46] has been used for
smoothing.

As it is observed from Fig. 16 the energy release rate can be
obtained accurately by integrating the traction-separation curve
at integration points in elements cut by the crack front. The oscil-
lations which occur in the energy release rate calculation can be
alleviated by refining the mesh or by applying a smoothing
procedure.

The crack front evolution for 20 steps with Ad; = 0.3 mm is
demonstrated in Fig. 17. The initial elliptical crack is expected to
grow to a circular shape. As it is seen in Fig. 17 the proposed
method tracks the crack evolution to a circular front very well. A
slight deviation from a true circle is observed which can be
reduced by refining the mesh. As it is seen in Fig. 15 the meshing
of the specimen is completely irregular. The presented benchmarks
show the ability of the proposed approach to efficiently handle the
two main constituents of fatigue crack growth simulations which
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are the calculation of energy release rates and the tracking of the
crack front.

4. Conclusion

A new method is proposed for modeling high cycle fatigue
delamination in composite materials. The presented approach is
based on a cohesive zone model and uses the level set method
for tracking the crack front evolution in 3D problems. The integra-
tion of the traction-separation curve at integration points is used to
calculate the energy release rate accurately. This method is supe-
rior to VCCT since it can be used for bi-material interfaces and no
remeshing is required for arbitrary crack growth. Smoothing is pro-
posed to reduce the oscillations of the calculated energy release
rates at integration points. Since the velocity at the nodes is
required by the level set method, the Newton-Cotes integration
scheme is used. Unlike previous fatigue models based on the cohe-
sive zone method, the presented approach does not introduce new
material parameters or require calculation of an effective length.
The benchmarks show the ability of the method to simulate
fatigue-driven delamination and track the front evolution in 3D.
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