خرید کتاب  Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications (Electronic Engineering Systems)

Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications (Electronic Engineering Systems)

by Phil Mars (Editor), J. R. Chen (Editor), Raghu Nambiar (Editor)

ISBN10: 0849378966

ISBN13: 978-0849378966

Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications (Electronic Engineering Systems)

دانلود، تحویل فوری، خرید آنلاین و فیزیکی، نسخه ارجینال

نسخه های الکترونیکی بعد از خرید، فوری تحویل داده خواهند شد.

جدول کتاب Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications (Electronic Engineering Systems):

فرمت قیمت پرداخت توضیحات
نسخه پی دی اف PDF 120,000 ریال خرید آنلاین
نسخه الکترونیکی ePub موجود نیست
نسخه کیندل آمازون موجود نیست
نسخه چاپی تحویل در ایران موجود نیست
نسخه صوتی موجود نیست
نسخه چاپی دست دوم موجود نیست
درخواست بررسی دوباره
عنوان Machine Learning Essentials
زیر عنوان Practical Guide in R
نویسنده Alboukadel Kassambara
ناشر STHDA
تاریخ انتشار 2018-03-10
توضیحات Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples.
تعداد صفحه 209
نوع چاپ BOOK
رتبه بندی سنی NOT_MATURE
panelizationSummary
زبان en
لینک کتاب https://market.android.com/details?id=book-745QDwAAQBAJ

این کتاب را به دوستان خود معرفی کرده، کسب درآمد کنید.

برای جستجو عناوین دیگر از فرم زیر استفاده کنید.